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Abstract

A defining trend in U.S. innovation is its increasing geographic concentration, exemplified by the growth
of high-tech clusters like Silicon Valley. What factors drive this increasing spatial concentration, and what
are its implications for regional and aggregate growth? Using comprehensive data on patents, firms, and
inventors from 1976 to 2018, I find that innovation became more concentrated in high-skill cities only after
1990, with the sudden rise of information and communication technologies (ICT) playing two distinct roles
in this process. First, there was a compositional shift in innovation towards ICT, which is colocated with
ICT production and concentrated in high-skill cities. Second, firms that were initially concentrated in
high-skill cities produced more non-ICT patents likely due to spillovers from ICT innovation and ICT-
enabled reductions in communication costs, which allowed these firms to expand production to lower-cost
regions and enhanced the profitability of new ideas. Worker migration to high-skill cities amplified the
effects of these mechanisms, intensifying the spatial concentration of innovation. To better understand the
mechanics of innovation across space and its consequences for macroeconomic growth, I develop a model
of spatial growth with endogenous and directed innovation, technology diffusion, and worker mobility.
The model provides an analytical characterization of the spatial direction of innovation on the transition
path and how its steady-state distribution across space determines long-run aggregate growth.
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1 Introduction

The central questions in spatial economics are what drives the geographic distribution of economic activity

and what are its local and aggregate consequences. This paper explores these questions in the context of the

rising spatial concentration of U.S. innovation, a striking trend in recent decades exemplified by the growth

of high-tech clusters like Silicon Valley. The agglomeration benefits of these clusters have been widely

discussed in urban economics and the popular press. Most notably, Moretti (2021) finds that individual

inventors are more productive when located in regions with a high density of inventors, with agglomeration

spillovers resulting in greater aggregate innovation than if inventors were evenly distributed across space.

More fundamentally, however, little is known formally about why the growth of these high-tech clusters has

been a relatively recent phenomenon in the United States. Do shifts in industry composition, firm entry,

worker sorting by skill, or initial conditions explain the rise of high-tech clusters? Understanding the root

causes driving the rising spatial concentration of innovation is crucial for developing effective placed-based

policies that might amplify these mechanisms and promote local growth. Additionally, the macroeconomic

consequences of these high-tech clusters remain unclear. Do they boost the production of ideas that are

adopted nationwide, thereby enhancing aggregate growth, or do these ideas remain confined within the

high-tech clusters, potentially stifling broader economic development?

To answer these questions, it is essential first to carefully examine when and where the growth of high-

tech clusters occurred. I begin by leveraging comprehensive data on patents and inventors to develop new

measures that track how the geography of innovation in the United States has evolved over time. These

measures reveal that the spatial concentration of patents remained relatively constant between 1976 and

1990 but increased dramatically from 1990 to 2018. Specifically, the Gini coefficient of patents per capita

increased from approximately 0.36 in 1990 to 0.50 in 2018 – a change four times greater than the rise in

income inequality in the US over the same period. Alternative measures of spatial concentration – such as

the share of patents produced in the top 10 or 15 regions, the Herfindahl-Hirschman Index, and the Ellison-

Glaeser measure – exhibit similar trends. Notably, this rising concentration primarily occurred in high-skill

cities rather than in densely populated or large ones. The annual elasticity of patents per capita with respect

to the Commuting Zone’s (CZ) 1990 college ratio increased from about 1 in 1990 to 2 in 2018.

These facts suggest that a significant shock around 1990 triggered the growth of high-tech clusters. I find

that the rapid rise of information and communication technologies (ICT) played two distinct roles in this

process. First, there was a compositional shift in innovation toward ICT, with the share of patents in ICT

rising from approximately 8.5% in 1990 to 33% in 2018. Notably, ICT patents are more concentrated in

high-skill cities: both the Gini coefficient of ICT patents per capita and the elasticity of CZ ICT patents per

capita with respect to the 1990 college ratio are nearly double those of patents in other fields. This greater

concentration is likely driven by the colocation of ICT innovation with ICT production – comprising Software

Publishers; Telecommunications; and Data Processing, Hosting, and Related Services – which was already

concentrated in high-skill cities before 1990, presumably to access high-skill labor. A simple decomposition

shows that the rising share of ICT patents accounts for 53% of the overall increase in the concentration of

1



innovation in high-skill cities from 1990 to 2018. Additionally, the ICT production – and, consequently, ICT

innovation – became even more concentrated in high-skill cities after 1990, accounting for an additional 13%

of the overall increase.

Second, firms initially concentrated in high-skill cities produced significantly more non-ICT patents after

1990, accounting for the remaining third of the overall increase in the spatial concentration of innovation

in high-skill cities from 1990 to 2018. In particular, a one-unit increase in firms’ initial elasticity of patents

per capita with respect to the 1990 college ratio between 1988 and 1990 is associated with a 20ppt greater

increase in non-ICT patents in 2000 relative to 1990. I provide circumstantial evidence that the ICT shock

from 1990 explains this compositional shift in non-ICT patents across firms through two mechanisms: (i)

spillovers from ICT to non-ICT innovation, and (ii) the spatial expansion of these firms to lower-cost

locations, which likely increased the profitability of new ideas – a phenomenon I term the asymmetric scale

effect. Specifically, after controlling for firms’ ICT patents, the greater increase in non-ICT patents among

firms initially concentrated in high-skill cities is reduced by half. Although other shocks in the 1990s may

have disproportionately benefited these firms, driving increases in both ICT and non-ICT patents, a more

plausible explanation is that these firms gained from spillovers from ICT to non-ICT innovation following

the ICT shock. Additionally, I find that these firms disproportionately expanded to lower-cost locations:

a one-unit increase in a firm’s elasticity of employment per capita with respect to the 1990 college ratio

between 1988 and 1990 is associated with a 4ppt greater increase in the number of CZs within the firm’s

establishments in 2000 relative to 1990. More importantly, this expansion corresponds to a significantly

larger decrease of 0.2 in the firm’s elasticity of employment per capita with respect to the 1990 college ratio

in 2000 relative to 1990. These estimates indicate that firms initially concentrated in high-skill cities were

more likely to expand to lower-cost regions after 1990 but not before, providing evidence of the asymmetric

scale effect : a novel productivity advantage of high-skill cities following the ICT shock.

My empirical findings suggest that the ICT shock from 1990 drove the rising spatial concentration of inno-

vation in high-skill cities through three primary mechanisms: a compositional shift in innovation towards

ICT, which is colocated with ICT production in high-skill cities; spillovers from ICT to non-ICT innovation;

and the spatial expansion of firms initially concentrated in high-skill cities to lower-cost locations, i.e. the

asymmetric scale effect. To formalize and better understand each of these mechanisms, I develop a model

of spatial growth that centers on endogenous, directed, and microfounded innovation, integrated with tech-

nology diffusion and worker mobility. My theory builds on modeling techniques from Eaton and Kortum

(2001) and Lind and Ramondo (2024), integrating endogenous innovation and technology diffusion at the

level of individual ideas, the fundamental unit in the Eaton-Kortum structure (Eaton and Kortum, 2024).

Consequently, my model characterizes the degree of colocation between innovation and production. It also

explains the asymmetric scale effect, where high-wage regions disproportionately benefit from ICT-induced

reductions in communication costs nationwide due to their greater gains in idea market access. These

equilibrium results cannot be obtained in existing spatial growth models, where innovation is either highly

stylized or modeled as independent of technology diffusion.
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My model features two sectors, ICT and non-ICT. In each region and sector, inventors receive ideas from

a Poisson process, with arrival rates determined by: (i) the regional college ratio; (ii) sector-specific, time-

varying research productivity (capturing the compositional shift of innovation towards ICT); (iii) agglom-

eration economies in innovation (capturing local spillovers from ICT to non-ICT innovation), and; (iv)

region-specific, time-varying research productivity (capturing factors unexplained by the model). Each idea

corresponds to the production of a specific good from the unit interval. Once an idea is discovered in one

region, its diffusion to other regions is governed by independent Poisson processes, with arrival rates pro-

portional to the intensity of within-firm connections between the corresponding regions, as driven by firms’

spatial expansion. Each idea has two additional components – modeled as marks on each Poisson process –

stochastic quality, drawn from a Pareto distribution upon discovery, and stochastic applicability, drawn from

a separate Pareto distribution upon arrival in a different region. The productivity of an idea in producing

its corresponding good is determined by the product of its quality and applicability. This microfounded

structure generates a multivariate productivity distribution for goods at each instant, where the marginal

distribution in each region is Fréchet à la Eaton and Kortum (2002), but with an endogenous scale parameter

determined by the past history of innovation in all regions and diffusion speeds in all region-pairs. Conse-

quently, goods’ productivity draws are correlated across regions due to common idea discovery locations,

generating more realistic trade patterns. Notably, the equilibrium trilateral trade shares are determined by

the product of idea adoption and idea market shares, reflecting the spatial mechanics of innovation docu-

mented in my empirical findings. The idea adoption shares characterize the degree of colocation between

innovation and production, while the idea market shares show that a uniform increase in bilateral diffusion

speeds disproportionately benefits high-skill cities due to a greater increase in access to lower-cost regions

for producing goods derived from new ideas, i.e. the asymmetric scale effect.

While the aggregate idea adoption and idea market shares capture the spatial mechanics of innovation, a

model of endogenous innovation requires that agents have incentives to innovate. In my model, there is a unit

continuum of firms in each market (defined by region and sector), which hire inventors and own their ideas.

Each firm is thus a collection of ideas. These firms engage in Bertrand competition à la Bernard et al. (2003),

where the lowest cost producer of each good claims the entire market for that good, charging the highest

markup that deters any competitor from entering. This market structure generates an endogenous markup

distribution across ideas, driven by their stochastic quality, while aggregate profits from the sale of all goods

in any destination market is a constant share of total income or expenditure in that market. The expected

value of an individual idea in any destination market is determined by the product of its market share and

the total profits earned from the sale of all goods in that market. Consequently, wages from innovation

are determined by the sum of the expected values of an idea across all destination markets, multiplied by

the Poisson arrival rate in the region where innovation occurs. Over time, workers make dynamic decisions

about moving across regions and sectors, as well as between production and research, based on wages from

innovation and production. Along the transition path, the ratio of real wages from innovation across regions

characterizes the incentives for worker mobility and, consequently, the spatial direction of innovation.
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An additional advantage of my model is its ability to characterize how the geography of innovation affects

aggregate growth and shapes the welfare impact of the ICT shock, thereby establishing a direct connection

between quantitative trade and spatial models with innovation and endogenous growth models in macroe-

conomics. Along the balanced growth path, prices in all regions fall at the same aggregate rate, mirroring

macroeconomic growth models. Regional wages differ but remain constant over time, determined by the

spatial distribution of workers, trade, and technology diffusion like in quantitative trade and spatial models.

However, unlike macroeconomic growth models, the aggregate growth rate of prices in my model is endoge-

nously determined by the spatial distribution of innovation rates. In contrast to trade and spatial models, a

temporary shock to fundamentals in my model impacts not only the steady-state distribution of trade shares

and nominal wages but also the long-run growth rate of the economy through falling prices. Specifically, I

use the characterizations of the balanced growth and transition paths to analytically decompose the welfare

impact of the ICT shock – or any other shock to economic fundamentals – into its transitory and long-run

growth components.

Contribution to the Literature

This paper makes two central contributions across different fields in economics. First, I leverage comprehen-

sive data on patents, inventors, and firms to examine when, where, and why innovation became increasingly

spatially concentrated in the United States. While the empirical literature in innovation and urban eco-

nomics has documented the rise of high-tech clusters in recent decades (e.g. Feldman and Kogler, 2010;

Andrews and Whalley, 2021) and highlighted the benefits these clusters offer – such as enhancing inventor

productivity and connecting innovation with academic science (e.g. Moretti, 2021; Bikard and Marx, 2020)

– the more enduring and challenging question of what drives the growth of these high-tech clusters remains

unanswered. I identify the growth of high-tech clusters from 1990 onward as having primarily occurred in

high-skill cities, with the ICT shock likely driving this trend through three distinct mechanisms: colocation,

spillovers, and the asymmetric scale effect. The first mechanism – the colocation of ICT innovation and pro-

duction – is a sector-specific extension of the broader colocation of innovation and production documented

within the United States by Fort et al. (2020) and across countries by Liu (2024). Specifically, Fort et al.

(2020) show that firms and firm-regions with both innovation and production plants generate more patents

than those without. I build on their findings by highlighting the role of ICT plants versus a broader set of

innovation plants that includes R&D facilities. Additionally, I examine the intensive margin of colocation

through employment shares and investigate how colocation influences the aggregate spatial concentration

of innovation. The third mechanism highlights the geography of firm spatial expansion and its aggregate

consequences on the spatial concentration of innovation. In particular, I present the first evidence that firms

initially concentrated in high-skill cities expanded production to lower-cost regions significantly more than

other firms after 1990, but not before. This extends the empirical firm network literature, which documents

the spatial expansion of firms (e.g. Hsieh and Rossi-Hansberg, 2021; Kleinman, 2022; Jiang, 2023) but largely

abstracts from the geographic dimensions of this expansion.
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Second, I develop a model of spatial growth that integrates endogenous and directed innovation with tech-

nology diffusion at the level of individual ideas, thereby contributing to the quantitative trade, spatial, and

macroeconomic literatures. Unlike Eaton and Kortum (2001) and Lind and Ramondo (2023a, 2024), inno-

vation in my framework is fully endogenous and depends not only on equilibrium trade but also the entire

technology diffusion network. Consequently, I characterize the degree of colocation between innovation and

production as well as illustrate the asymmetric scale effect – how a uniform rise in bilateral diffusion speeds

disproportionately benefits high-wage regions. These equilibrium results correspond to the spatial mechan-

ics of innovation documented in my empirical findings and cannot be derived in existing trade and growth

models, where innovation is either highly stylized or modeled as independent of technology diffusion. Most

notably, Buera and Oberfield (2020) model technology diffusion as the transfer of knowledge from existing

goods to the creation of new ones, such that the technology diffusion network does not impact profits from

innovation. Somale (2021) incorporates endogenous innovation but excludes technology diffusion. Two re-

cent papers integrate trade, innovation, and diffusion, albeit with simplifying assumptions. Cai et al. (2021)

assumes perfect substitutability of ideas diffused from different locations, resulting in a scenario where small

changes in relative wages cause large shifts in idea adoption and trade shares – a feature Eaton and Kortum

term “the problem of flats”. Meanwhile, Xiang (2023) assumes instantaneous diffusion, limiting the model’s

ability to capture the spatially heterogeneous effects of a uniform increase in bilateral diffusion speeds on

idea market access.

Additionally, unlike the quantitative trade and innovation literature, my model incorporates dynamic worker

mobility with frictions and provides an analytical characterization of both the balanced growth path – the

primary focus of this literature – and the transition path. By characterizing the transition path in response

to shocks in economic fundamentals, my work aligns with the class of quantitative dynamic spatial models

with worker migration (Caliendo et al., 2019), capital accumulation (Kleinman et al., 2023), and knowledge

diffusion (Cai et al., 2022). I extend this class of models by introducing endogenous and directed innovation

while maintaining tractability, allowing for the potential integration of these other mechanisms. Desmet

et al. (2018) offers perhaps the only workhorse quantitative spatial model featuring endogenous innovation.

However, they model endogenous innovation under perfect competition, where incentives to innovate arise

from land rents. In contrast, my model fully microfounds innovation and technology diffusion within the

Eaton-Kortum framework. Consequently, the spatial and sectoral directions of innovation on the transition

path in my model depend not only on local population but also on equilibrium trade and technology diffusion

networks. Furthermore, my analytical characterization of the spatial direction of innovation on the transition

path extends the endogenous growth literature in macroeconomics, which has exclusively focused on the

sectoral direction of technological change (e.g. Acemoglu, 1998, 2002, 2007) while abstracting from spatial

considerations.
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2 An Empirical Examination of the Rising Spatial Concentration of

Innovation in the United States: When, Where, and Why

One of the most salient facts in the empirics of innovation is its rising spatial concentration in the United

States, exemplified by the growth of Silicon Valley-like clusters. The fundamental drivers of this trend

have, however, remained elusive despite more than two decades of research on the geography of innovation.

Understanding why innovation became increasingly concentrated in space requires careful consideration of

when and where it happened. In this section, I use the universe of patents, inventors, and patenting firms

from 1976-2018 to: (i) develop new measures of the geography of U.S. innovation; (ii) document trends in the

spatial concentration of innovation and its underlying geography, and; (iii) provide suggestive evidence on

the key mechanisms driving these trends. I present these as nine facts after discussing my data sources.

Data

I obtain the universe of patents produced between 1976 and 2022 from PatentsView, supplemented with

bulk files from the US Patent and Trademark Office (USPTO). My sample includes all 3.70 million utility

patents where at least one inventor lists a US address. Each patent contains extensive information, including

inventor addresses, which typically reflect their home city and state. Using the Google Maps API, I geocode

these addresses and map them to various spatial resolutions within the United States. I use these inventor

locations to calculate annual patent counts for each region and derive measures of the spatial concentration

of innovation across regions over time. Additionally, every patent is assigned a unique primary Cooperative

Patent Classification (CPC) technology class. To analyze the role of compositional changes in innovative

activity across fields, I map these classes to broader technology fields and subfields by adapting the field

classification methodology developed by the World Intellectual Property Organization. Most patents also

have one or more assignees, typically US firms, that hold ownership of the intellectual property. To examine

the roles of compositional changes across firms and firm spatial expansion, I link these patent assignees to

the universe of firms in the restricted US Census Longitudinal Business Database (LBD) using crosswalks

provided by Kerr and Fu (2008) and Dreisigmeyer et al. (2018). Within firms, I assign inventors to regions in

two alternative ways: the commuting zone (CZ) of their home city, and the nearest CZ where the firm has an

establishment following Fort et al. (2020). I supplement the US Census LBD data with data on public firms

and their establishments from 1990-2018 sourced from Dun and Bradstreet’s National Establishment Time

Series (NETS) Database. In my empirical analysis, I refer to firms interchangeably as patent assignees, public

firms from the NETS dataset, and patenting firms from the LBD. See Appendix A for more details.

List of Facts

My facts highlight the key mechanisms driving the rising geographical concentration of innovation in recent

decades and are as follows: (1) innovation became more concentrated in high-skill cities after 1990; (2)

the rapid rise of information and communication technologies (ICT) occurred primarily after 1990; (3)

ICT innovation is more concentrated in high-skill cities than other fields; (4) ICT innovation is colocated

6



with ICT production, both of which became more concentrated in high-skill cities after 1990; (5) non-ICT

innovation also became more concentrated in high-skill cities after 1990; (6) firms initially concentrated in

high-skill cities drove non-ICT patent growth after 1990; (7) these firms likely benefited disproportionately

from spillovers of ICT innovation; (8) these firms increasingly and disproportionately expanded to low-

skill regions after 1990 (the asymmetric scale effect); and (9) both low and high-skill workers migrated to

high-skill cities from 1990.

Specifically, I attribute the rising geographical concentration of innovation in high-skill cities since 1990

(Fact 1) to the effects of the ICT shock (Fact 2) on ICT innovation (Facts 3 and 4) through colocation and

on non-ICT innovation (Facts 5 to 8) through spillovers and the asymmetric scale effect. Worker migration

to high-skill cities (Fact 9) amplifies the impact of the ICT shock.

Fact 1: Innovation became more concentrated in high-skill cities after 1990

I begin by using the locational Gini index (Krugman, 1991) to measure the aggregate spatial concentration

of innovation annually from 1976 to 2018. For each commuting zone (CZ), I calculate its share of total

patents and share of total population in the US. I then rank CZs by their patent-to-population share ratio

and plot the cumulative sum of patent shares against the cumulative sum of population shares to construct

the locational Gini curve. The locational Gini index, proportional to the area between this curve and

the 45-degree line, measures the concentration of patents across CZs relative to population, with each CZ

weighted by its population share. A value of zero indicates perfect equality while a value of one reflects

perfect inequality1.

Using this index, the solid black line in the left panel of Figure 1 shows that the spatial concentration of

patents remained approximately constant from 1976 to 1990 but increased significantly from 1990 to 2018.

The dotted grey line depicts the trend in the spatial concentration of inventors, computed annually by

substituting patent shares with inventor shares in the locational Gini index. This trend closely mirrors that

for patents, with the gap between the two from 1995 to 2018 potentially reflecting agglomeration economies

in innovation, as documented by Moretti (2021)2. The dot-dashed blue line illustrates trends in the locational

Gini index of patents relative to college-educated workers, computed annually by replacing population shares

with college-educated worker shares in the locational Gini index. Relative to college-educated workers, the

spatial concentration of patents remained approximately constant in the 1980s and rose significantly after

1990. This finding suggests that the rising spatial concentration of innovation cannot be attributed to the

1Formally, the locational Gini index G of patents x with respect to population L across all the N CZs is equivalent to half
of the weighted mean absolute deviation of patents across all CZ-pairs o, d:

G =
1

2µ

N∑
o=1

N∑
d=1

Lo

L

Ld

L
|xo − xd|, µ =

N∑
o=1

Lo

L
xo.

2Specifically, Moretti (2021) shows that inventors produce more patents when located in regions with more inventors. This
finding implies that the spatial concentration of patents exceeds that of inventors.
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Figure 1: Trends in the spatial concentration of innovation across CZs. The left panel plots trends in the spatial
concentration of innovation from 1976 to 2018, measured with respect to population and college educated workers
using a locational Gini index (Krugman, 1991) and USPV data. For each CZ, I calculate annual shares of U.S.
patents, inventors, population, and college-educated workers. Locational Gini curves are constructed for each year by
ranking CZs based on the ratio of their patent or inventor share to their population or college-educated worker share,
and plotting the cumulative sum of patent or inventor shares against the corresponding population or college-educated
worker shares. The locational Gini index for each year is calculated as twice the area between the 45-degree line and
the respective locational Gini curve. The right panel shows trends in the spatial concentration of innovation from
1865-2015 documented by Andrews and Whalley (2021) using a dartboard innovation intensity concentration index, a
normalized measure of the sum of deviations of CZ patent shares from population shares.

geographical sorting of workers by skill from 1980-20003. In Figure 16 in Appendix B.1, I demonstrate the

robustness of these trends to: (i) excluding top patenting CZs such as San Jose, San Francisco, Newark,

and Los Angeles, and; (ii) employing alternative measures of spatial concentration, including the coefficient

of variation, Herfindahl index, simplified Ellison and Glaeser (1997) index, and annual share of patents

produced by the top 10 CZs. The right panel presents trends in the spatial concentration of innovation from

1865 to 2015, as documented by Andrews and Whalley (2021)4 using an alternative patent dataset and a

dartboard innovation intensity concentration index: a normalized measure of the sum of deviations of CZ

patent shares from population shares building on the Ellison-Glaeser index. This figure also reveals a sharp

rise in the spatial concentration of innovation beginning in 1990.

The locational Gini curve also provides a natural, annual measure of patenting activity for each CZ that

allows for meaningful comparisons over time: the patent-to-population share ratio. This measure reflects

patents per capita while normalizing the total number of patents and population in each year, effectively

capturing each CZ’s contribution to the overall locational Gini coefficient in that year. Compared to existing

3I compare this trend against the geographical sorting of patents in Fact 10
4Note that this paper does not analyze where and why innovation became more spatially concentrated starting in 1990.
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measures in the literature, changes in the patent-to-population share ratio over time reveal whether patents

are increasingly concentrated in a given CZ, independent of scale and after controlling for changes in local

and national populations5. Figure 2 depicts the geography of changes in the patent-to-population share ratio

between 5-year averages around 1990 and 2015 while Table 1 in Appendix B.1 lists the top 15 CZs with the

largest increase in this period. In addition to well-known superstar cities such as San Jose, San Franciso,

San Diego, Seattle, and Boston, regions like Portland, Boise, Wayne, Provo, and Fort Collins also emerged

as some of the most innovative areas in the United States between 1990 and 2015. Figure 3 shows how

the geography of these changes relate to the rise in the Gini coefficient since 1990. The left panel displays

the patent-to-population share ratio across regions in 1990, while the right panel shows that regions with

a higher ratio in 1990 generally maintained an even higher ratio in 2015. Conversely, regions with a lower

ratio in 1990 experienced an even lower ratio by 2015.

Figure 2: Changes in the geography of innovation intensity from 1990 to 2015, measured using changes in the patent-
to-population share ratio on a pseudo-log scale.

5Raw patent counts, commonly used in other papers, suffer from several limitations. First, they inherently favor regions
with larger populations, leading to biased rankings that can change arbitrarily when regions are grouped differently. Second,
intertemporal comparisons are less informative because increases in raw patent counts can result from aggregate growth in
patenting, changes in a CZ’s share of annual patents, or regional population growth. R&D expenditures, an alternative measure
of innovation, are typically available only at the state level.
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Figure 3: The geography of the patent-to-population share ratio in 1990 (left) and its correlation with the same ratio
in 2015 (right)

Using this measure, Figure 4 shows that innovation became increasingly concentrated in high-skill CZs

between 1990 and 2018. The left graph plots the correlation between the log college ratio in 1990 and the

percentage change in patent share per unit population share from 1990 to 2015 across CZs. Specifically,

a 1% increase in the college ratio in 1990 is associated with a 0.8% greater increase in patent share per

unit population share over this period. To account for regions with zero patents and to exploit the annual

frequency of the dataset, I estimate annual elasticities αt of patents per capita6 with respect to the 1990

college ratio using the following Poisson Pseudo Maximum Likelihood (PPML) specification:

Patents per capitar,t = exp
(
αt · Log 1990 College Ratior ×Yeart + γt + ϵr,t

)
. (1)

where r represents regions and t denotes years. The estimated annual aggregate elasticities αt serve an

important role for the remainder of my empirical analysis. The right graph of Figure 4 shows that this

elasticity remained fairly constant at around 1 from 1976 to 1990 but rose sharply thereafter. This trend

reflects the gradual geographical sorting of patents per capita across CZs, driven by differences in their

initial college ratios in 1990. Importantly, the geographical sorting of patents per capita by initial skill ratio

is not mechanically driven by greater increases in the college ratio of initially high-skill CZs: in Figure 15

in Fact 10, I document that worker sorting by skill in the US predominantly occurred in the 1980s and did

not continue after 1990. Additionally, Figure 17 in Appendix B.1 plots trends in the elasticity of CZ patents

per capita with respect to the 1990 population and population density, respectively. The absence of a clear

break in these trends after 1990 suggests that the skill mix of workers in 1990 is a more important margin

for the geographical sorting of patents per capita over time than either population size or density.

6This is equivalent to the patent-to-population share ratio with year fixed effects.
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Figure 4: The geographical sorting of patents per capita into high-skill cities from 1990. The left graph shows how
percentage changes in the patent-to-population share ratio from 1990 to 2018 relate to the initial college ratio across
CZs. Specifically, it plots changes in log patent-to-population share ratio between five-year averages around 1990 and
2015 against the 1990 college ratio on a log scale, with the size of each CZ’s dot representing its population. The
right graph plots trends in the annual elasticity of CZ patents per capita with respect to the 1990 college ratio. The
confidence intervals in both graphs reflect heteroskedastic-robust standard errors.

Fact 2: Information and communication technologies rose rapidly after 1990 (the ICT

shock)

Why did innovation become more spatially concentrated in high-skill cities after 1990 but not before? I find

that the sudden rise of information and communication technologies (the ICT shock) around 1990 accounts

for much of this trend. The ICT shock can be characterized by two key aspects. First, there was a dramatic

compositional shift in innovation towards the ICT sector. Kelly et al. (2021) identify eight breakthrough

patents7 related to computer networks between 1985 and 1995, with the first four produced during 1985-

1990. These influential patents served as a catalyst for the ICT boom in innovation, as evidenced by the

similarity in content and the citations made by subsequent ICT patents. Figure 5 highlights the content of

the first of these breakthrough patents, which introduced a method for propagating resource information in

a computer network.

This first, direct aspect of the ICT shock, i.e. a sharp rise in the annual share of ICT innovation in the

ICT sector after 1990, is illustrated in the left panel of Figure 6, which plots trends in the annual number of

patents by technology field8. While patenting has generally increased over time across all fields, the growth

in ICT patents from 1990 to 2018 is particularly pronounced, rising from approximately 8.5% in 1990 to

33% in 2018 (middle panel).

7these are Patent Numbers 4,800,488; 4,823,338; 4,827,411; 4,887,204; 5,249,290; 5,341,477; 5,544,322; and 5,586,260
8See Appendix A for more details on patent technology fields and subfields.
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Figure 5: Contents of the first of eight breakthrough patents in ICT identified by Kelly et al. (2021)

Figure 6: Trends in the number of patents (left) and share of annual patents (middle) by technology field, as well as
the national employment share in ICT production (right).

In contrast, trends in employment in ICT production are less clear. Building on Fort et al. (2020), I

define ICT production to include the following industries in the Information Sector (NAICS 51): Software

Publishers (5112); Telecommunications (517), and; Data Processing, Hosting, and Related Services (518).

I categorize these industries as ICT production, rather than ICT innovation, because establishments that

focus on R&D activities are instead classified as Scientific Research and Development Services (5417) and

occasionally Corporate, Subsidiary, and Regional Managing Offices (551114) under the North American

Industry Classification System (NAICS). The right panel of Figure 6 illustrates trends in the national

employment share in ICT production, based on harmonized County Business Patterns data from Eckert

et al. (2020). The graph shows that the employment share in ICT production rose from approximately 1.4%

in 1990 to 2.0% in the early 2000s, but it declined in the subsequent years as well as during the 1980s.
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Second, the ICT shock significantly reduced communication costs across regions. Greenstein (2015) and

Jiang (2023) characterize the ICT revolution as the rising availability of high-speed internet, facilitated by

the development of the National Science Foundation Network (NSFNET) from 1986 until its full privati-

zation in 1995. The NSFNET, established by the National Science Foundation, was designed to connect

supercomputing centers across the US and provide high-speed internet to researchers nationwide. A pivotal

moment came in March 1991, when the Acceptable Use Policy was modified to allow commercial traffic

on the network, granting firms access to high-speed internet for the first time. Although the NSFNET

backbone consisted of just 11 nodes in 1991 and 15 in its full version in 1993, many of these nodes connected

to regional networks, thereby extending high-speed internet access to universities and firms across most US

regions. Appendix B.2 provides a detailed history of the NSFNET.

Fact 3: ICT innovation is more concentrated in high-skill cities compared to other

fields

The compositional shift of innovation toward ICT – i.e., the direct aspect of the ICT shock – increased

the aggregate spatial concentration of innovation, as ICT patents are more concentrated in high-skill cities

compared to patents in other fields. Figure 7 illustrates this disparity: both the Gini coefficient of patents

per capita (left graph) and the elasticity of patents per capita with respect to the 1990 college ratio (right

graph) are notably higher in ICT (as shown by the solid black lines) compared to other fields before and

after 1990.

Figure 7: Trends in the locational Gini coefficient (left) and elasticity with respect to 1990 college ratio (right) of
patents per capita by technology field.
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More formally, I decompose the post-1990 increase in the aggregate annual elasticity, αt, of CZ patents per

capita with respect to the 1990 college ratio into within-field and cross-field components as follows:

αt∗ − α1990 =
t=t∗∑
t=1991

∆αt =
t=t∗∑
t=1991

[∑
k

αk,t∆sk,t︸ ︷︷ ︸
changes in field
composition

+
∑
k

sk,t∆αk,t︸ ︷︷ ︸
within-field
changes

+∆

(
αt −

∑
k

sk,tαk,t

)
︸ ︷︷ ︸
residual: changes in the

colocation of fields

]
(2)

where αk,t is the annual elasticity of CZ patents per capita in field k and year t with respect to the 1990

college ratio, and xt =
xt+xt−1

2 and ∆xt = xt−xt−1 denote the average and change of any variable x between

t− 1 and t. The first term reflects the impact of changes in the field composition of US patents. This term

is positive if patents are increasingly produced in fields that are more spatially concentrated in high-skill

cities. The second term captures the role of changes in the spatial concentration of patents in high-skill cities

within fields. The third term accounts for changes in the colocation of fields in high-skill cities, measured

by differences in the overall elasticity of patents per capita against the 1990 college ratio from a weighted

mean of the field-specific elasticities. The left panel of Figure 8 plots trends in this decomposition, while the

right panel further decomposes the cross-field component into contributions from individual fields. These

graphs show that 60% of the increase in the overall elasticity is attributed to cross-field changes – 53% of

the increase in the overall elasticity is explained by the rising share of ICT patents and 7% from the rising

share of Biology patents. In Appendix B.3.1, I decompose the rise in the overall Gini coefficient of patents

per capita from 1990 to 2018 and find that 52% of the increase is similarly driven by the rising annual share

of ICT patents.

Figure 8: Trends in the decomposition of the aggregate elasticity of CZ patents per capita with respect to the 1990
college ratio. The left panel decomposes the aggregate elasticity into within versus cross field components, while the
right panel further breaks down the cross-field component into contributions from individual fields.
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Fact 4: ICT innovation is colocated with ICT production, both of which became more

concentrated in high-skill cities after 1990

An underlying mechanism that explains the greater concentration of ICT innovation in high-skill cities

relative to other fields is its colocation with ICT production. Specifications (1) and (3) in the left panel of

Figure 9 provides evidence of this mechanism from the following regression:

ICT Patents per capitar,t = β · ICT Employment Sharer,t × 1(Year ≥ 1990) + γt + εr,t, (3)

where r represents CZs, t represents years, γt are year fixed effects.

Dependent Variable: ICT patents per capita Non-ICT patents per capita
Model: (1) (2) (3) (4)

Log ICT Emp Share 0.9662∗∗∗ -0.2483 0.2707∗∗∗ 0.0856
× Before 1990 (0.1266) (0.1828) (0.1050) (0.1025)
Log ICT Emp Share 1.988∗∗∗ 0.4262∗∗∗ 0.6292∗∗∗ 0.2408∗∗∗

× After 1990 (0.3045) (0.1604) (0.1438) (0.0927)

Fixed-effects
Year Yes Yes Yes Yes
CZ Yes Yes

Fit statistics
Observations 29,602 25,748 29,602 29,397
Squared Correlation 0.00094 0.91117 0.02510 0.78363
Pseudo R2 -839,527.3 0.41004 -615,422.7 0.19299
BIC 0.3 0.3 0.3 0.4

Clustered (CZ) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Figure 9: Colocation of ICT patents with employment share in ICT production, which is increasingly concentrated in
high-skill cities. The left table shows the correlation between ICT/non-ICT patents per capita and the employment
share in ICT production with year and CZ fixed effects. Each observation is at the CZ-year level, weighted by CZ
population. The right graph plots trends in the annual elasticity of the CZ employment share in ICT production with
respect to the 1990 college ratio.

Before 1990, a 10% increase in the employment share in ICT production is associated with a 9.6% increase

in ICT patents per capita and a 2.7% increase in non-ICT patents per capita annually across CZs. The

statistically significant difference between these estimates highlights the stronger colocation of ICT produc-

tion with ICT innovation compared to non-ICT innovation. After 1990, a 10% increase in the employment

share in ICT production is associated with a 19.9% increase in ICT patents per capita and a 6.3% increase

in non-ICT patents per capita annually across CZs. That ICT patents per capita is much more strongly

correlated with ICT production relative to non-ICT patents per capita suggests an even stronger colocation

between the ICT production and innovation after 19909.

Colocation explains why ICT innovation is more concentrated in high-skill cities compared to non-ICT

innovation, as the ICT service sector is predominantly concentrated in these regions. The right panel

of Figure 9 plots trends in the annual elasticity of the CZ employment share in ICT production with

9Results from the estimation of these relationships at the firm-CZ level are awaiting disclosure from the US Census Bureau.
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respect to the 1990 college ratio, captured by the estimated γt coefficients from the following regression via

PPML:

ICT Emp Sharer,t = exp
(
γt · Log 1990 College Ratior ×Yeart + γt + ϵr,t

)
. (4)

where r represents CZs, t represents years, and γt are year fixed effects. These elasticities are positive even

before 1990, with a 10% increase in the 1990 college ratio across CZs associated with a 4 to 8% higher

employment share in the ICT production in various years prior to 1990.

Additionally, employment in ICT production became increasingly concentrated in high-skill cities from 1990

to 2000. The right panel of Figure 9 shows that the annual elasticity of the ICT employment share with

respect to the 1990 college ratio increased from approximately 0.8 in 1990 to 1.2 in 2000. This rising con-

centration of ICT production employment is correlated with the increasing concentration of ICT innovation

in these cities. Specifications (2) and (4) in the left panel of Figure 9, which incorporate both year and CZ

fixed effects in equation 3, indicate that after 1990, a 10% increase in the employment share of the ICT

service sector within a given CZ over time is associated with a 4.3% increase in ICT patents per capita

and a 2.4% increase in non-ICT patents per capita, after controlling for national trends10. In turn, the

increasing concentration of ICT innovation in high-skill cities since 1990 accounts for an additional 13% of

the overall rise in the patent concentration during this period, as demonstrated in my field decomposition

using equation 2.

In summary, these findings extend the results of Fort et al. (2020) by offering an ICT sector-specific analysis

of the colocation of innovation and production. Together, they underscore colocation as a critical mechanism

driving both the greater concentration of ICT innovation in high-skill cities compared to non-ICT innovation

and the subsequent increase in the ICT innovation concentration in high-skill cities since 1990.

Fact 5: Non-ICT innovation became more concentrated in high-skill cities after 1990

Facts 3 and 4 focus on the role of the ICT sector in driving the rising spatial concentration of aggregate

innovation. An important question that remains from my field decomposition in equation 2 and Figure

8 is why non-ICT innovation also became increasingly concentrated in high-skill cities, accounting for the

remaining one-third of the overall rise in innovation concentration in these regions since 1990. To investigate

this, I first document trends in the spatial concentration of innovation within each field. Figure 10 replicates

the trends in the Gini coefficient and elasticity by field from Figure 7, normalizing the 1990 levels to zero

for clearer comparison over time.

The left panel of Figure 10 shows that the locational Gini coefficient increased for all fields except Chemistry

between 1990 and 2018. Notably, the spatial concentration of patents in Physics, Electrical Engineering &

Electronics, and Biology & Medicine rose sharply during the 1990 to 2000 period. These fields predominantly

concentrated in high-skill cities, as evidenced by the right graph: the annual elasticity of CZ patents per

10Results from the estimation of these relationships at the firm-CZ-year level are awaiting disclosure from the US Census
Bureau.
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Figure 10: Trends in changes relative to 1990 of the locational Gini coefficient (left) and elasticity with respect to 1990
college ratio (right) of patents per capita by technology field.

capita in these fields with respect to the 1990 college ratio increased significantly over the same period. In

contrast, the spatial concentration of patents in Mechanical Engineering rose more gradually from 1990 to

2018, while the spatial concentration of patents in Civil Engineering & Consumer Goods primarily increased

between 2000 and 2018. Patents in these fields also became increasingly concentrated in high-skill cities from

the early 2000s to 201811. The yellow long-dashed line and the pink dotted line in the right graph indicate

that the elasticity of patents per capita in these fields with respect to the 1990 college ratio increased steadily

during this period, though to a smaller extent compared to the sharper rises observed for Physics, Electrical

Engineering & Electronics, and Biology & Medicine.

Fact 6: Firms initially concentrated in high-skill cities drove non-ICT patent growth

after 1990

The rising concentration of non-ICT innovation in high-skill cities since 1990 could be driven by firm entry,

compositional changes in patent shares across existing firms, and changes in the geography within firms.

Identifying their relative importance is challenging. To make progress, I first decompose the rising spatial

11More precisely, I find that patents in Mechanical Engineering became more concentrated in manufacturing hubs from 1990
to 2000 and shifted toward high-skill cities from the early 2000s onwards. Supporting evidence for the rising concentration of
Mechanical Engineering patents in manufacturing hubs during this earlier period is available on request.
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concentration of non-ICT patents in high-skill cities αt into within-firm and across-firm components:

αt∗ − α1990 =

t=t∗∑
t=1991

∆αt =

t=t∗∑
t=1991

[∑
f

αf,t∆sf,t︸ ︷︷ ︸
changes in firm
composition

+
∑
f

sf,t∆αf,t︸ ︷︷ ︸
within-firm
changes

+∆

(
αt −

∑
f

sf,tαf,t

)
︸ ︷︷ ︸

changes in the
colocation of firms

]
, (5)

where αf,t is the annual elasticity of CZ patents per capita in firm f and year t with respect to the 1990

college ratio12. Analogous to the field decomposition in equation 2 above, the first term captures the impact

of changes in the composition of patenting firms, the second term reflects changes in the concentration

of patents in high-skill cities within firms, and the third term accounts for the residual. The left panel of

Figure 11 plots trends from this decomposition, showing that the rising concentration of non-ICT innovation

in high-skill cities is almost entirely driven by the first term, compositional changes across firms.

Figure 11: Decomposition of the aggregate elasticity of CZ non-ICT patents per capita with respect to the 1990 college
ratio into within versus across firm (left) and into firms existing before 1990 versus new firms (right).

To assess whether these compositional changes are driven by firm entry, I further decompose the rising spatial

concentration of non-ICT patents in high-skill cities into contributions from firms that began patenting before

1990 versus those that started afterward. Specifically, I categorize patents into these two mutually exclusive

groups and calculate the impact of changes in the concentration of patents within each group, as well as

the effect of the rising share of patents in the latter group. The right panel of Figure 11 presents trends

from this decomposition, revealing that most of the increase is driven by firms that began patenting before

199013.

12I acknowledge that some of these firm-level elasticities are estimated with large standard errors, which are omitted from
my decomposition. Nonetheless, the decomposition across firms is primarily descriptive. Future drafts will incorporate more
econometrically robust methods; however, the central finding – that compositional changes across firms account for nearly all
of the rising concentration of non-ICT patents in high-skill CZs since 1990 – is unlikely to change.

13I attribute both the rising share of patents from firms that began patenting from 1990 and the rising concentration of
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A direct implication of the results from these two decompositions is that firms originally concentrated in high-

skill cities produced significantly more patents after 1990. To explore why these firms experienced greater

patent growth, I conduct a series of firm-level regressions. I first estimate trends in the correlation between

firm-level non-ICT patents and their initial patent elasticity (a measure of initial patent concentration in

high-skill cities), while controlling for the firm’s initial size and spatial scope in 1990. Formally, this trend

is represented by δt in the following specification:

Non-ICT Patentsf,t = exp
(
δt · 1990 Patent Elasticityf ×Yeart + γ · Controlsf + γt + ϵf,t

)
(6)

where 1990 Patent Elasticityf is firm f ’s average annual elasticity of patents per capita with respect to the

1990 college ratio from 1988 to 1990 (capturing its initial patent concentration in high-skill cities) and similar

to αf,1990 in the firm decomposition (equation 5), γt are year fixed effects, γf are firm fixed effects, and the

set of firm-level time-invariant controls include the firm’s average number of annual patents from 1988 to

1990 (a proxy for initial firm size), and the firm’s average annual number of CZs of their inventors across all

patents from 1988 to 1990 (a proxy for initial firm spatial scope)14. The left panel of Figure 12 plots the δt

coefficients, showing that a one-unit increase in the firm’s 1990 patent elasticity with respect to the college

ratio is associated with a 20 percentage point greater increase in the number of non-ICT patents in 2000

relative to 199015. This trend suggests that a firm’s initial patent concentration in high-skill cities, rather

than its initial size or spatial scope, explains its subsequent growth in non-ICT patents after 1990.

Figure 12: Trends in the semi-elasticity of non-ICT patents with respect to a firm’s initial concentration of patents in
high-skill cities (1988-1990), and after controlling for the firm’s ICT patents in the respective year (right). For each
graph, I normalize the estimated semi-elasticity in 1990 to 0.

patents within this group to the contribution of assignee entry (i.e. assignees existing from 1990).
14As with the firm decomposition exercise, I acknowledge that the explanatory variable, 1990 Patent Elasticityf , is itself

estimated from firm-level regressions and may have large standard errors that are currently ignored. While future drafts will
incorporate more econometrically robust specifications and more direct evidence from patent citations, the current results
provide circumstantial evidence of the primary mechanisms driving disproportionately larger non-ICT patent growth among
firms initially concentrated in high-skill cities. These qualitative findings are unlikely to change.

15This trend remains similar with the inclusion of firm fixed effects, and results are available upon request.
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Fact 7: Firms initially concentrated in high-skill cities likely benefited more from ICT

innovation spillovers

Why does a firm’s initial patent concentration in high-skill cities in 1990 influence the subsequent trajectory

of its non-ICT patents? I provide circumstantial evidence of two potential mechanisms in Facts 7 and

8 respectively. The first mechanism is spillovers from ICT to non-ICT innovation. The right panel of

Figure 12 plots the δt coefficients from equation 6, now incorporating a time-varying control for the firm’s

trajectory of ICT patents. The trend shows that the increase in firm-level non-ICT patents in the left panel

is attenuated by half, implying that approximately 50% of the rise in non-ICT patents is directly associated

with corresponding increases in ICT patents within the same firm. While it is possible that other exogenous

shocks disproportionately benefited firms in high-skill cities – leading to simultaneous increases in ICT and

non-ICT patents after 1990 – identifying alternative shocks that align in both timing and impact with these

patterns remains challenging. Instead, the evidence supports the presence of spillovers from ICT to non-ICT

innovation, predominantly concentrated in high-skill cities where the ICT boom occurred.

Fact 8: Firms initially concentrated in high-skill cities expanded disproportionately to

low-skill regions after 1990 (the asymmetric scale effect)

The second mechanism is that firms initially concentrated in high-skill cities disproportionately expanded

to new, lower-skill production locations after 1990. I now estimate trends in the correlation between the

number of CZs with the firm’s establishments and their initial employment elasticity (a measure of initial

employment concentration in high-skill cities), while controlling for the firm’s initial size and spatial scope

in 1990. Formally, this trend is represented by κt in the following specification:

No of CZs of Plantsf,t = exp
(
κt · 1990 Emp Elasticityf ×Yeart + γ · Controlsf,t + γt + γf + ϵf,t

)
, (7)

where 1990 Emp Elasticityf represents firm f ’s average annual elasticity of employment per capita with

respect to the 1990 college ratio from 1988 to 199016, γt are year fixed effects, γf are firm fixed effects, and

the set of controls include the firm’s average annual employment from 1988 to 1990 and the firm’s average

annual number of CZs containing its plants from 1988 to 1990.

The left panel of Figure 13 displays this trend and shows that a one-unit increase in the firm’s initial

elasticity of employment per capita with respect to the 1990 college ratio is associated with a 4 percentage

point greater increase in the number of CZs containing the firm’s plants in 2000 relative to 1990. This effect

is not an artifact of the regression specification: the middle panel shows trends when the dependent variable

in equation (7) is replaced with the firm’s total employment, where there are no significant increases after

1990.

16I acknowledge that the firm’s employment elasticity itself is estimated from a regression of patents within the firm across
CZs and may contain large standard errors. Alternative specifications that address this concern will be available in a subsequent
draft.
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Figure 13: Trends in the semi-elasticity of the number of CZs containing the firm’s establishments (left) and the firm’s
total employment (middle) with respect to the firm’s concentration of employment in high-skill cities from 1988 to
1990, along with trends in the correlation between the firm’s annual employment elasticity and its initial concentration
of employment in high-skill cities (right). In each of these trends, I normalize the 1990 value to 0.

To investigate where firms initially concentrated in high-skill cities expanded to, I examine the correlation

between a firm’s annual employment elasticity against its initial employment elasticity in 1990, captured by

υt in the following specification:

Emp Elasticityf,t = υt · 1990 Emp Elasticityf ×Yeart + γ · Controlsf + γt + ϵf,t (8)

where Emp Elasticityf,t is firm f ’s annual elasticity of employment per capita with respect to the 1990

college ratio and the controls are identical to the ones in equation 7.

The right panel of Figure 13 displays this trend, showing that firms initially concentrated in high-skill cities

disproportionately expanded to lower-skill locations. In particular, a one-unit increase in the firm’s initial

elasticity of employment per capita with respect to the 1990 college ratio is associated with a 0.2-unit

greater decrease in the firm’s elasticity of employment per capita with respect to the 1990 college ratio by

2000 relative to 1990. This trend suggests that while firms maintained their presence in high-skill cities, they

increasingly shifted employment and production into lower-skill regions after 1990, just as communication

costs fell with the rising availability of high-speed internet from the ICT shock (Fact 2). Viewed through

the lens of an Eaton-Kortum model, as formalized in the next section, this shift was likely motivated by cost

advantages in these lower-skill areas. By reducing production costs, these firms enhanced the profitability

of new ideas, which in turn contributed to the observed rise in non-ICT patents after 1990.

21



Fact 9: High- and low-skill workers migrated to initially high-skill cities from 1990,

keeping relative regional college ratios stable

My analysis thus far has focused on innovation intensity, as measured by the patent-to-population share

ratio. Since 1990, workers have been migrating to high-skill cities, amplifying the effects of the ICT shock

on the spatial concentration of innovation. The left panel of Figure 14 displays the correlation between

population growth from 1990 to 2015 – measured by the change in log points – against the initial college

ratio in 1990. The positive slope or elasticity tells us that initially high-skill cities experienced greater

population growth from 1990 to 2015. The right panel shows how the slope of this correlation plot varies

as the end year on the vertical axis changes from 1990 to 2018, indicating that there has been a rising

concentration of population in high-skill cities.

Figure 14: How percentage changes in CZ population share from 1990 to 2015 relate to the initial college ratio. The left
panel displays changes in the log population share between five-year averages around 1990 and 2015 against the 1990
college ratio. Each CZ is weighted by its initial population. The right panel shows how the slope of this correlation
plot varies as the end year on the vertical axis changes from 1990 to 2018, without taking five-year averages. The
confidence intervals capture heteroskedastic-robust standard errors.

Despite the rising concentration of population in high-skill cities since 1990, Figure 15 shows that the

geographical sorting of workers by skill to these cities did not occur after 1990. The left panel shows

correlations between the college ratio rank in 1980 and 1990 and shows that the identity of high-skill cities

did not change much during this period. The right panel displays the trend in the correlation between the

percentage increase in college ratio from 1980 – measured by log points – and the log college ratio in 1980.

The point estimate of 0.09 in 2000 indicates that a 10% increase in the 1980 college ratio across CZs is

associated with a 0.9% greater increase in the college ratio from 1980 to 2000. This exactly corresponds to

Moretti (2013) and Diamond (2016). I extend their analysis by estimating this correlation for 1990, 2010,

and 2018, thereby capturing the dynamics of worker sorting over time. The absence of an increase in the

correlation estimate in 2000, 2010, or 2018 relative to 1990 indicates that worker sorting primarily occurred

in the 1980s and did not continue after 1990. This trend suggests that the rising concentration of patents

in high-skill cities since 1990 is not merely a mechanical outcome of worker sorting by skill.
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Figure 15: The rank correlation between CZ college ratios in 1980 and 1990 (left) and trends in the correlation between
the percentage change in the CZ college ratio from 1980 and the log 1980 college ratio, where each CZ is weighted by
its population (right). The confidence intervals capture heteroskedastic-robust standard errors.

3 A Model of Spatial Growth with Endogenous Innovation, Technology

Diffusion, and Worker Mobility

My empirical findings suggest that the ICT shock from 1990 (Fact 2) accounts for most of the rising spatial

concentration of innovation in high-skill cities after 1990 (Fact 1) through three distinct mechanisms. The

first mechanism is a direct effect: a compositional shift of innovation towards ICT, which is colocated with

ICT production (Fact 4) and more concentrated in high-skill cities relative to innovation in other fields

(Fact 3). In addition, non-ICT innovation became more concentrated in high-skill cities after 1990 (Fact 5),

likely driven by two indirect effects of the ICT shock. Specifically, firms initially concentrated in high-skill

cities produced more non-ICT patents from 1990 (Fact 6), likely due to: (i) spillovers from ICT to non-

ICT innovation (Fact 7), and (ii) geographic expansion into lower-cost regions, facilitated by ICT-induced

reductions in communication costs (the asymmetric scale effect) (Fact 8). Worker migration to high-skill

cities during this period (Fact 9) amplified the effect of these mechanisms.

Simultaneously explaining these nine facts – which detail the three key mechanisms driving the rising concen-

tration of innovation in high-skill cities – is a significant challenge that demands a highly flexible framework.

To address this, I develop a model of spatial growth that integrates endogenous innovation and technology

diffusion at the level of individual ideas, the fundamental unit of the Eaton-Kortum structure. Consequently,

my model preserves the flexibility of this framework, naturally characterizing the degree of colocation of inno-

vation and production as well as the asymmetric scale effect, where high-skill cities benefit disproportionately

from a uniform increase in bilateral diffusion speeds nationwide (capturing ICT-induced reductions in com-

munication costs) due to greater gains in idea market access17. Given its flexibility, my model may also

17These mechanisms cannot be derived from existing spatial growth models – such as Buera and Oberfield (2020); Desmet et al.
(2018); Cai et al. (2022) – which typically overlay additional assumptions or structures onto the fundamental Eaton-Kortum
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serve as a methodological tool for quantifying the causes and consequences of the geography of innovation

across different contexts.

In my model, the productivity distribution of goods – and consequently the trade shares – is fully endogenous

and generated from the dynamics and microfoundations of innovation and technology diffusion, while the

incentives to innovate depend on equilibrium trade and technology diffusion. The model features two sectors:

ICT and non-ICT. In each region and sector, innovation workers generate new ideas through a Poisson

process, where the arrival rate is influenced by several key factors. These include sectoral productivity in

innovation, which captures compositional shifts in innovation toward ICT (the direct effect of the ICT shock),

and agglomeration economies, including spillovers from ICT to non-ICT innovation (the first indirect effect of

the ICT shock). Once an idea is discovered in a particular region, its diffusion to other regions is governed by

independent Poisson processes. I alternately assume that the diffusion rate is either homogeneous across all

region-pairs, or proportional to the intensity of within-firm connections between the corresponding regions.

Both formulations capture the asymmetric scale effect from falling communication costs (the second indirect

effect of the ICT shock). With additional assumptions, this microfounded structure generates a multivariate

productivity distribution for goods at each instant, where the marginal distribution in each region is Fréchet

à la Eaton and Kortum (2002), but with an endogenous scale parameter. This scale parameter evolves based

on the past history of innovation levels in all regions and diffusion speeds in all region-pairs, capturing both

the direct and indirect effects of the ICT shock. In each region and sector, a unit continuum of immobile

firms hire inventors, own their ideas, and engage in Bertrand competition à la Bernard et al. (2003). The

lowest-cost producer of each good captures the entire market for that good by charging the highest markup

that deters competitors from entering. As a result, the expected value of an idea – and consequently the

wages of innovation workers and incentives to innovate in each region – depends on equilibrium trade and

idea diffusion shares. Over time, workers make dynamic decisions about moving between production and

research and relocating across regions and sectors, based on relative wages in innovation and production,

extending Caliendo et al. (2019). The resulting equilibrium worker mobility shares shape the spatial direction

of innovation along the transition path, while the steady state distribution of workers – and the corresponding

spatial distribution of innovation rates – ultimately determine the aggregate growth of the economy along

the balanced growth path.

Formally, the model consists N regions, denoted by r,o,d, which correspond to the locations of innovation

or research (r), production (o for origin), and consumption (d for destination). The two sectors – ICT and

non-ICT – are denoted by k,s, while the two types of economic activities are goods production (G) and

research (R). Time is continuous, with t∗ representing the period when ideas are produced from research

and t the period when goods are produced. The equilibrium objects and central mechanisms of the model

are presented as lemmas and propositions, with proofs relegated to Appendix C.

framework, thereby reducing flexibility.
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3.1 Endogenous Innovation and Technology Diffusion

Research in each region and sector is produced by firms, that hire local inventors (i.e. workers in the region-

sector that choose innovation instead of production at time t∗), via the following production function:

λkr,t∗ = Ar,t∗︸︷︷︸
fundamental

research
productivity
in region r

(function of
college ratio)

· Akt∗︸︷︷︸
sector-specific

national research
productivity

(Direct effect
of ICT)

·
(
LRr,t∗

)α︸ ︷︷ ︸
agglomeration
economies

in innovation
including
spillovers
from ICT
to non-ICT

· Lk,Rr,t∗︸︷︷︸
number

of inventors

· T kr,t∗︸︷︷︸
sector-specific
technology level

in region r

. (9)

The first term represents the fundamental research productivity in the region. It includes a time-invariant

component proportional to the region’s college ratio – reflecting the comparative advantage of high-skill

cities in innovation – and a time-varying component that accounts for factors unexplained by the model,

such as local innovation policies, infrastructure, or other regional trends. The second term denotes the

sector-specific research productivity common across all regions. This term captures the compositional shift

of innovation towards ICT, reflecting the direct effect of the ICT shock on national research productivity in

the ICT sector relative to other sectors. The third term represents agglomeration economies in innovation,

including spillovers from ICT to non-ICT innovation (and vice versa) – the first indirect effect of the shock.

The fourth term denotes the number of inventors in the region and sector, directly scaling the production

of new ideas. The fifth term captures the level of technology in the region and sector. This term ensures

the model delivers fully endogenous growth on the balanced growth path, as shown by Eaton and Kortum

(2024) in a setting without idea applicabilities18.

While this deterministic research production function captures compositional shifts and innovation spillovers

resulting from the ICT shock, additional structure is necessary to derive the goods productivity distribution

and equilibrium trade shares in the Eaton-Kortum framework. An alternative interpretation of the research

production function, incorporating stochastic microfoundations, is that each inventor in region r and sector k

receives idea draws from a marked Poisson process with rate Akt∗Ar,t∗
(
LRr,t∗

)α
T kr,t∗ dt, such that the aggregate

arrival rate in the region and sector aligns with equation (9). Each point on this Poisson process corresponds

to an individual idea and is characterized by three independent marks: (i) the good or variety ν to which

it applies, drawn from the uniform distribution over [0,1]; (ii) its intrinsic quality q drawn from a Pareto

distribution with cumulative distribution function:

H(q) = 1− q−θ, q ≥ 1, θ > 0 (10)

where the parameter θ reflects the variability in idea quality, and; (iii) its applicability a, which is distinct

across regions o and times after discovery (t ≥ t∗).

18Alternatively, replacing Tl,t∗ with T β
l,t∗ with β < 1 would yield semi-endogenous growth, as in many single-region growth

models pioneered by Jones (1995); Kortum (1997).
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The applicability component captures technology diffusion at the level of individual ideas and is instrumental

for both my central theoretical results and the tractability of my overall framework. Concretely, it is

represented by an N × 1 vector, where each element corresponds to a distinct region. This vector governs

two key aspects for a given idea in each region: (i) the probability the idea diffuses to a given region at

each t ≥ t∗, and (ii) the suitability of the idea for producing the corresponding good in the region upon

its diffusion there. In the idea’s discovery region r, the vector’s element is a deterministic path of 1 for all

t ≥ t∗, reflecting that the idea is always accessible in the location where it was initially developed. At the

idea’s discovery time, its applicability is drawn from the following Pareto distribution:

F (a) = 1−
(
a

a

)σ
, a ≥ 1, σ > θ, a = Γ

(
1− θ

σ

)− 1
θ

. (11)

In each of the other regions o ̸= r, the idea arrival probability is stochastic. Specifically, the applicability

vector’s element is an independent marked Poisson process with the arrival rate δro,t∗ dt for all t ≥ t∗, where

the marks reflect the idea’s suitability for local production of the corresponding good and are drawn from

equation (11)19. This stochastic applicability ensures that even high-quality ideas may have varying levels

of usefulness across regions and periods, generating non-trivial equilibrium idea diffusion shares20.

3.2 Production and Trade

Given sector-specific innovation rates, the process of technology diffusion described above operates inde-

pendently across sectors. Consequently, the productivity distributions and trade shares are independently

determined for each sector. To enhance clarity, I omit sector superscripts in what follows.

At each time t and in each sector k, region o produces each good or variety ν using the most efficient idea i

available to them:

zo,t(ν) = max
i

{qi · ai,o,t} (12)

where qi is the quality of idea i, and ai,o,t is its maximum applicability in region o at time t.

This microfounded structure for innovation and technology diffusion is particularly tractable because it

endogenously generates a multivariate Fréchet distribution for goods productivity. Formally:

19Note that this intuitive microfounded structure implies that the history of all the applications in region o of an idea developed

in region r consists of points of a two-dimensional Poisson process with intensity Γ
(
1− θ

σ

)−σ
θ σa−σ−1δro,t∗e

−δro,t∗ (t−t∗)dadt,
the formulation used in Lind and Ramondo (2024). That idea diffusion follows a Poisson process implies exponential diffusion
as in Eaton and Kortum (1999), but with a random component so that the set of countries where the idea has diffused to need
not be tracked. The scale parameter a in equation (11) ensures that the derived goods productivity distribution is finite.

20In the next subsection, I leverage these idea diffusion shares to characterize the degree of colocation of innovation and
production.
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Lemma 1. Given that ideas arrive from a marked Poisson process described in equations (9-(11), each idea

is discovered at time t∗ at a unique discovery location, and its productivity is multiplicative in quality and

applicability [equation 12], the joint productivity distribution across regions at each time t is max-stable

multivariate Fréchet, given by:

P [Z1,t ≤ z1, . . . , ZN,t ≤ zN ] = exp

− N∑
o=1

� t

−∞

[
N∑
l=1

Ωro,t∗(t− t∗) z
− θ

1−ρ
o

]1−ρ
λr,t∗dt

∗

 (13)

and the marginal productivity distribution in each region is Fréchet and given by:

P [Zo,t ≤ zo] = exp
[
−To,tz−θo

]
(14)

with shape parameter θ > 0 and scale parameter:

To,t =
N∑
r=1

Tro,t =
N∑
r=1

� t

−∞
Ωro,t∗(t− t∗)1−ρ︸ ︷︷ ︸
technology diffusion

· λr,t∗︸︷︷︸
innovation

dt∗ (15)

where Ωro,t∗(t− t∗)21 is the share of ideas discovered in region r at time t∗ that arrived in region o by time

t and is given by:

Ωro,t∗(t− t∗) =


1− e−δro,t∗ (t−t

∗) for o ̸= r, t ≥ t∗

1 for o = r, t ≥ t∗

0 for t < t∗.

(16)

In each region o, the production of each variety ν uses only labor with productivity zo,t(ν) drawn from the

equilibrium multivariate Fréchet distribution given by equation (13). A representative final goods producer

aggregates across all varieties in each region and sector as follows:

Yo,t =

[� 1

0
Yo,t(ν)

ϵ−1
ϵ dν

] ϵ
ϵ−1

. (17)

Trade costs are of the standard iceberg type, such that delivering one unit of any variety from region o to

region d at time t requires shipping τod,t ≥ 1 units of the variety, with τoo,t = 1 for all o, and τod,t ≤ τod′,tτd′d,t

for all o, d, and d′. The cost of each variety ν in region d is the minimum unit cost across all regions:

cd,t (ν) = min
o

{
τod,two,t
zo,t(ν)

}
where wo,t is the wage of production workers in region o at time t.

21Note that I use the notation Ωro,t∗(t−t∗), following Lind and Ramondo (2024), to emphasize that the share of ideas that has
diffused from region l to region r depends on the time from idea discovery t− t∗. In the next subsection, I leverage the dynamics
of technology diffusion to formally characterize the asymmetric scale effect: that high-skill cities benefit disproportionately from
uniform increases in bilateral diffusion costs due to greater increases in idea market access.
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Lemma 2. Given the multivariate Fréchet distribution of goods productivity across regions in equation (13),

equilibrium trade shares are given by:

πod,t =
N∑
r=1

πrod,t =
N∑
r=1

� t

−∞
φrod|rd,t∗t︸ ︷︷ ︸

share of goods in d
produced in o at t

given ideas from r at t∗

(conditional idea
adoption shares)

· ϕrd,t∗t︸ ︷︷ ︸
share of goods in d at t
using ideas from r at t∗

(idea market shares)

dt∗ (18)

with the conditional idea adoption shares given by:

φrod|rd,t∗t =

[
1− e−δro,t∗ (t−t

∗)
]
(wo,tτod,t)

− θ
1−ρ∑N

o′=1

[
1− e−δro′,t∗ (t−t

∗)
] (
wo,tτo′d,t

)− θ
1−ρ

, (19)

and the idea market shares given by:

ϕrd,t∗t =
Φ1−ρ
rd,t∗tλr,t∗∑

r′

� t

−∞
Φ1−ρ
r′d,t′tλr′,t′dt

′
, ρ = 1− θ

σ
< 1, (20)

where I define the idea market access term Φrd,t∗t as:

Φrd,t∗t ≡
∑
o

(
1− e−δro,t∗ (t−t

∗)
)
(wo,tτod,t)

− θ
1−ρ =

∑
o

φrod|rd,t∗t. (21)

The price index in region d is:

Pd,t = Γ

[
N∑
r′=1

� t

−∞
Φ1−ρ
r′d,t∗tλr′,t∗dt

∗

]− 1
θ

(22)

where Γ is a constant, and 1 + θ > ϵ guarantees a well-defined price index.

The equilibrium trade shares in equation (18) illustrate the interconnections between innovation, diffusion,

and trade. Unlike standard trade models, this framework allows for innovation and production to occur

in different locations. Consequently, trade shares are represented as the sum of trilateral shares, πrod,

across all innovation regions r. These trilateral trade shares denote the share of goods sold in destination

region d that were produced in origin region o using ideas developed in region r. Because the discovery

time of an idea, t∗, may differ from the time of production, trade, and consumption, t, and because ideas

are not perfect substitutes, it is necessary to distinguish goods produced from ideas developed at different

times. Accordingly, the trilateral trade shares at time t are expressed as an integral over all idea cohorts

t∗ ≤ t: πrod,t =
� t
−∞ πrod,t∗t dt

∗. The trilateral share for each idea cohort, πrod,t∗t, exhibits a nested

structure because productivity is drawn from a multivariate Fréchet distribution with correlation across idea

discovery locations. Specifically, the trilateral share for each idea cohort equals the share of goods ϕrd,t∗t sold

in destination region d at time t using ideas developed in region r at time t∗ (idea market shares) multiplied
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by the conditional probability φrod|rd,t∗t that region o is the lowest-cost location for producing these goods

(conditional idea adoption shares).

3.2.1 Degree of Colocation between Innovation and Production

The idea market and idea adoption shares, in turn, capture the spatial mechanics of innovation documented

in my empirical findings. Specifically, by aggregating the conditional idea adoption shares in equation (19)

across different destination markets d, we obtain the (unconditional) idea adoption shares:

φro,t∗t =
∑
d

φrod|rd,t∗t =
∑
d

[
1− e−δro(t−t

∗)
]
(wo,tτod,t)

− θ
1−ρ∑N

o′=1

[
1− e−δro′ (t−t

∗)
] (
wo′,tτo′d,t

)− θ
1−ρ

. (23)

This expression represents the share of successful ideas developed in region r at time t∗ that were adopted

in region o for production of the corresponding goods at time t. A “successful idea” here refers to one

that resulted in a good sold in at least one destination market at time t. Using this expression, I formally

characterize the degree of colocation between innovation and production in the following corollary:

Corollary 1. For goods sold at time t using ideas developed at time t∗, the degree of colocation between

innovation and production for any region r relative to an alternative production location o ̸= r is given

by:

φrr,t∗t
φro,t∗t

=
1

1− e−δro(t−t∗)
·
(
wr,t
wo,t

)− θ
1−ρ

·
∑

d (τrd,t)
− θ

1−ρ∑
d (τod,t)

− θ
1−ρ

.

This ratio captures the relative share of goods produced in the idea’s origin region r versus an alternative

production region o, providing a direct measure of how closely innovation and production are colocated. The

different components reflect key factors driving colocation, including the share of all ideas that diffuse from

r to o (first term), the cost competitiveness between r and o (second term), and the relative accessibility of

destination markets d from r and o (third term).

3.2.2 The Asymmetric Scale Effect of Rising Technology Diffusion Speeds

Additionally, the idea market shares (equation 20) incorporate the idea market access term (equation 21),

which characterizes the asymmetric scale effect , where high-skill cities experience a disproportionately

greater incentive to innovate from a uniform increase in bilateral diffusion speeds. This is formalized in the

following corollary:

Corollary 2. If bilateral diffusion speeds are symmetric (δrr′ = δr′r) and trade costs are identical (τrd = τr′d),

an increase in the bilateral diffusion speed results in a greater increase in idea market access for the region

with the higher wage, i.e.:

∂Φrd,t∗t
∂δrr′,t∗

−
∂Φr′d,t∗t
∂δrr′,t∗

= δrr′e
−δrr′ (t−t∗)

[(
wr′,tτr′d,t

)−θ − (wr,tτrd,t)
−θ
]
> 0 if wr,t > wr′,t.
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Intuitively, a symmetric increase in the bilateral diffusion speed disproportionately increases the incentives of

the higher-wage region to innovate by improving its access to a lower-cost region for production, allowing it

to better exploit cost efficiencies22. In contrast, the lower-wage region benefits less, as its already competitive

production costs limit the relative advantage of gaining access to a higher-cost region.

Together, these corollaries underscore the central endogenous outcomes of my theory – colocation and asym-

metric scale effects – which align precisely with the spatial mechanics of innovation documented in my empir-

ical findings. Moreover, my theory is highly tractable, relying solely on particular probabilistic assumptions

on technology, like other models in the Eaton-Kortum world. Besides the constant Γ, the equilibrium trade

shares and price index are independent of the specific market structure for goods production.

3.3 Market Structure and Incentives to Innovate

Modeling endogenous innovation, however, requires profits from production to generate incentives to in-

novate. Thus, I build on seminal papers that depart from perfect competition (Eaton and Kortum, 2001;

Bernard et al., 2003). In each region and sector, a unit continuum of immobile firms hire inventors and own

their ideas. These firms engage in Bertrand competition, where the lowest cost producer of each good claims

the entire market for that good, charging the highest markup that deters any competitor from entering.

Proposition 1. Given Bertrand competition, the markup distribution is invariant across idea discovery

time t∗, production time t, idea discovery location r, origin o, destination d, and sector k and distributed

Pareto:

P (M ≤ m|M ≥ 1) =
brd(1, t

∗, t)− brd(m, t
∗, t)

brd(1, t∗, t)
=
brod(1, t

∗, t)− brod(m, t
∗, t)

brod(1, t∗, t)
= 1−m−θ = H(m), (24)

where bld(m, t
∗, t) is the probability that an idea discovered in region r at time t∗ will undercut the lowest

cost competitor in region d at time t by m, and brod(m, t
∗, t) is the same probability but with an additional

condition that production of the good occurs in region o.

Proposition 1 extends the result in Eaton and Kortum (2001) to a setting with technology diffusion, where

the location and time of goods production can differ from those of idea production23. Intuitively, this

generalization is possible because the distribution of idea applicability is independent of idea quality. This

invariant markup distribution is crucial for deriving closed-form expressions for aggregate profits and the

expected value of individual ideas within each region-sector.

Specifically, the invariant markup distribution implies that all firms in sector k selling in destination d charge

a markup drawn from H(m). Consequently, the total profits earned from selling in destination d, irrespective

22I connect the idea market access term to inventor real wages in Proposition 2.
23Eaton and Kortum (2024) provide a more general derivation of the markup distribution by leveraging the distribution of

price gaps, but do not address how this distribution might change in a setting with technology diffusion.
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of the locations of innovation and production, are given by:

Πd,t = Xd,t

� 1

0
1− 1

m(ν)
dν = Xd,t

� ∞

1
1− 1

m(ν)
dH(m) =

Xd,t

1 + θ
(25)

where Xd,t is the total spending by production workers and inventors in region d at time t and given

by equation (36). Because the markup distribution is identical whether conditional or unconditional on

the production location, profits from selling can be arbitrarily assigned to production, innovation, or a

combination of both. For simplicity, I assume that all profits are allocated to innovation. With these profit

transfers in each period, the expected value of an idea is formalized in the following lemma:

Lemma 3. Given Bertrand competition and the time- and region-invariant markup distribution, the ex-

pected value of an idea in region r and sector k is:

V̌r,t∗ =

� ∞

t∗
e−ζ(t−t

∗)
N∑
d=1

ϕrd,t∗t
λr,t∗︸ ︷︷ ︸

share of profits earned
in region d at time t
by an idea discovered
in region r at time t∗

·
Xd,t

1 + θ︸ ︷︷ ︸
profits earned
in region d
at time t

by all ideas

· Prt∗

Prt︸︷︷︸
accounting for
changes in

purchasing power
over time

dt (26)

where θ is the trade elasticity, ζ is the discount rate, and ϕrd,t∗t is the idea market share.

The expected value of an idea is given by the presented discounted value of the trajectory of profits for all

t ≥ t∗ during which the idea is used. The first term captures the probability the idea developed in region

r at time t results in a good sold in destination market d at time t, the second term represents the total

profits earned in destination market d at time t by all ideas, while the third term accounts for changes in

prices over time.

Firms generate a stream of profits from the ideas they own, which they reinvest continuously in risk-free

assets. Assets are produced using the same technology as final goods in each region24, as described by

equation (17), and do not depreciate over time. At each time t∗ and in each region-sector, firms hire local

inventors to produce ideas on their behalf, compensating them with wages equal to the expected return from

their innovation efforts:

wk,Rr,t∗ = Akt∗Ar,t∗
(
LRr,t∗

)α
V̌ k
r,t∗ . (27)

Thus, the wages of inventors are simply the product of the expected number of ideas they produce, as

described by the idea production function in equation (9), and the expected value of each idea.

The ratio of sector-specific inventor real wages across regions, in turn, provides key insights into the spatial

direction of innovation, as formalized in the following proposition:

24This structure mirrors the investment good technology in Kleinman et al. (2023), ensuring that the market clearing condition
in each period is solely determined by contemporaneous variables.
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Proposition 2. Given Bertrand competition and the structure of inventor compensation by firms, the

spatial direction of innovation is governed by the ratio of sector-specific inventor real wages across

regions:

ωk,Rr,t∗

ωk,Rr′,t∗
=

Ar,t∗

Ar′,t∗︸ ︷︷ ︸
fundamental

research
productivity
(function of
college ratio)

·

(
LRr,t∗

LRr′,t∗

)α
︸ ︷︷ ︸
agglomeration
economies

in innovation
including spillovers

from ICT to non-ICT

·

�∞
t∗ e−ζ(t−t

∗)
∑N

d=1
ϕrd,t∗t

λr,t∗
Yd,t
1+θ

1
Pr,t

dt
�∞
t∗ e−ζ(t−t∗)

∑N
d=1

ϕr′d,t∗t

λr′,t∗

Yd,t
1+θ

1
Pr′,t

dt︸ ︷︷ ︸
expected market potential of an idea,

with the idea market shares capturing
colocation between innovation and
production and idea market access

(28)

The higher the ratio in equation (28), the greater the returns to innovation directed toward region r relative

to region r′. Within each sector, the incentives to innovate across space are shaped by three main factors:

(i) time-varying fundamental research productivity, including a time-invariant component tied to regional

college ratios; (ii) agglomeration economies in innovation, and; (iii) the expected market potential of an

idea in all future periods. The first term captures forces unexplained by the model, such as local policies,

infrastructure, or other region-specific factors, as well as the comparative advantage of high-skill regions in

innovation. The second term reflects the benefits of proximity, including local knowledge spillovers from ICT

to non-ICT innovation – capturing the first indirect effect of the ICT shock as documented in my empirical

findings. The third term illustrates how idea market shares directly influence incentives to innovate. As

demonstrated in the previous subsection, these equilibrium idea market shares incorporate the idea market

access term, which capture the asymmetric scale effect – the second indirect effect of the ICT shock. This

idea market access term is composed of the conditional idea adoption shares, which reflect the degree of

colocation of innovation and production – the mechanism driving the direct effect of the ICT shock.

This ratio serves as an analog to the sectoral direction of technical change in Acemoglu (1998, 2002, 2007),

capturing inventor real wages in partial equilibrium to highlight the main forces shaping the spatial direction

of innovation. It is important to note that inventor real wages are determined by the market clearing condi-

tion in general equilibrium and hence influenced by many other factors in the economy, such as production

worker wages in all regions. In Appendix C.7, I present the wage ratio that governs the sectoral direction of

innovation.

3.4 Consumption and Worker Mobility

These incentives to innovate shape the spatial distribution of innovation rates because, as in any model of

endogenous innovation, workers must decide between production and research. To account for the observed

gradual rise in the spatial concentration of innovation following the ICT shock, my theory incorporates

bilateral mobility frictions. Additionally, to reflect the underlying trend of workers migrating to high-skill

cities, workers can move not only between production and research but also across regions and sectors. This

dynamic worker mobility decision extends the framework in Caliendo et al. (2019). These bilateral decisions

necessitate additional notation. I denote worker occupations h, n to represent either production (G) or

research (R).
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At each time t, given a worker’s choice of region d, sector k, and occupation h, they supply a unit of labor

inelastically, receive wages, and consume a bundle of local final goods from the ICT and non-ICT sectors

with the following Cobb-Douglas preferences:

Ck,hd,t =
(
ck,h,ICT
d,t

)ι (
ck,h,non-ICT
d,t

)1−ι
. (29)

where ι captures the sectoral expenditure share allocated to ICT goods.

Over time, a Poisson arrival process with rate 1 governs when workers can move. In anticipation of when a

move arrival occurs at some t′, workers decide where to migrate to, which sector to work in (ICT or non-

ICT), and whether to engage in production or research based on the present value stream of utility minus

the associated mobility costs from their current region, sector, and occupation. With perfect foresight, the

optimization problem of a worker in region d, sector k, and occupation h at time t is:

vk,hd,t = max
o,s,n

wk,hd,t
Pd,t

+
1

1 + ζ
Et
(
Eϵ
[
vs,no,t′

])
− κks,hndo,t + ϵs,no,t (30)

where κks,hndo,t are the costs of moving from region d, sector k, and occupation h to region o, sector s, and

occupation n, ζ is the discount rate, ϵs,no,t is an individual-specific idiosyncratic shock in each potential

destination region-sector-occupation, Et (·) is the time-t expectation over future state variables, and Eϵ (·)
is the expectation over the agent’s future realizations of the idiosyncratic shock. At each time t, I assume

each individual-specific idiosyncratic shock ϵs,no,t is drawn from a multivariate Gumbel distribution with the

following cumulative distribution function:

F̆
({
ϵs,no,t
}s={ICT,non-ICT},n={G,R}
o=1,...,N

)
= exp

{
−

[∑
o

∑
s

(∑
n

exp
(
−ϵs,no,t

)Υ
υ

)υ]}
(31)

where υ is the elasticity of worker mobility across regions and sectors, and Υ
υ is the elasticity of worker

mobility between production and research.

Lemma 4. Given individual-level worker mobility decisions defined by equations (30)-(31), the expected

value or lifetime utility of a representative worker in labor market (d, k, h) is given by:

V k,h
d,t ≡ Eϵ

[
vk,hd,t

]
=
wk,hd,t
Pd,t

+
1

Υ
log

[∑
o

∑
s

(∑
n

exp

(
1

1 + ζ
V s,n
o,t′ − κks,hndo,t

)Υ
υ

)υ]
(32)
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aggregate mobility shares of workers from (d, k, h) to (o, s, n) is given by:

µks,hndo,t ≡ Et
[
µ̌ks,hndo,t′

]
≡ µks,hndo,t |µksdo,t · µksdo,t

=
exp

(
1

1+ζV
s,n
o,t′ − κks,hndo,t

)Υ
υ

∑
n′

exp
(

1
1+ζV

s,n′

o,t′ − κks,hn
′

do,t

)Υ
υ

︸ ︷︷ ︸
switching between production and research

·

[∑
n′

exp
(

1
1+ζV

s,n′

o,t′ − κks,hn
′

do,t

)Υ
υ

]υ
∑
o′

∑
s′

[∑
n′

exp
(

1
1+ζV

s′,n′

o′,t′ − κks
′,hn′

do′,t

)Υ
υ

]υ
︸ ︷︷ ︸

migration across regions and sectors

(33)

and the worker population in (o, s, n) evolves as follows:

Ls,no,t′ =
∑
h

∑
k

∑
d

µks,hndo,t Lk,hd,t . (34)

3.5 Market Clearing

Closing the economy requires a market clearing condition for each time t, as formalized in the following

lemma:

Lemma 5. Accounting for the transfer of profits across regions, the combined goods and innovation market

clearing condition at time t is given by:

1 + θ

θ
wko,tL

k
o,t =

∑
d

πkod,tι
k

[∑
s

(
wsd,tL

s
d,t +

∑
r

φsdr,t
1

θ
wsr,tL

s
r,t

)]
(35)

where πkod,t are the trade shares from equation (18) and φkdr,t are the idea adoption shares from equation (23).

In particular, total expenditure in region d on sector k goods is given by:

Xk
d,t = ιk

[∑
s

(
wsd,tL

s
d,t +

∑
r

φsdr,t
1

θ
wsr,tL

s
r,t

)]
. (36)

Since profits earned from production are a constant multiple of the income earned by production workers

in the region-sector, and firms reinvest their profits in the same period to produce assets, neither profits

nor wages of innovation workers appear explicitly in the market clearing condition. Consequently, I have

omitted the superscript G for wages and labor to reduce notational burden.

3.6 Definition of Equilibrium

Given an initial distribution of technology levels {T ko,0}
N,N
o=1,k=1 and workers {Lk,ho,0 }

N ;{ICT,non-ICT};{G,R}
o=1;k;h ,

trajectories of bilateral trade costs {τod,t}N,N,∞o=1,d=1,t=0, bilateral migration costs {κks,haod,t }N ;N ;∞;{ICT,non-ICT};{G,R}
o=1;d=1;t=0;k,s;h,a ,

bilateral diffusion lags {δod,t∗}N,N,∞o=1,d=1,t∗=0, fundamental productivities in idea production

{Ar,t∗ , Akt∗}
N,{ICT,non-ICT},∞
r=1,k,t∗=0 and fundamental parameters and elasticities {θ, σ, υ,Υ, ι, α, ζ}, the
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dynamic competitive equilibrium is defined by a trajectory of values, wages, prices and labor alloca-

tions {V,w, P, L} that satisfy the bilateral migration shares and evolution of worker populations (Lemma

4), evolution of technology levels (Lemma 1 equation 15), bilateral trade and idea adoption shares (Lemma

2 equations 18 and 23), returns to innovation (Lemma 3) and market clearing condition (Lemma 5).

3.7 Model Extensions

By microfounding innovation and technology diffusion within the Eaton-Kortum framework, my dynamic

spatial model is highly tractable and can accommodate a broad range of extensions. These include dynamic

worker sorting, input-output loops, capital accumulation, and the inclusion of amenities with congestion and

agglomeration in goods production, as demonstrated in Appendix D.

4 Aggregate Consequences of the Rising Spatial Concentration of

Innovation from the ICT Shock

Beyond formalizing the key mechanisms driving the rising spatial concentration of innovation, my model

provides a framework to analyze its aggregate consequences, particularly its impact on overall economic

growth and the welfare implications of the ICT shock.

4.1 Balanced Growth Path

Specifically, the balanced growth path is highly flexible due to its block recursive nature, illustrating the

causes and consequences of the geography of innovation. This structure is formalized in the following

proposition:

Proposition 3. Along the balanced growth path where all equilibrium variables grow at constant (but

possibly different) rates:

(i) The growth rate of technology in each sector gk is identical across regions and determined by the solution

to the following system of equations:

Ṫ ko (t) =
∑
r

γkrT
k
r (t)

� t

−∞
gke−g

k(t−t∗)Ωro(t− t∗)1−ρdt∗ (37)

where γkr is the endogenous region-sector-specific innovation rate. In matrix form, this equation is given by:

gTk = ∆k(g)Tk (38)

where Tk is an N×1 vector with representative element T ko and ∆k(g) is an N×N matrix with representative

element:

∆k
ro(g

k) = γkr

� ∞

0
gke−g

kaΩro(a)
1−ρa.

Thus, gk is the Perron-Frobenius root of equation (38) with relative technology levels T corresponding to the

Perron-Frobenius eigenvector that is defined up to a scalar multiple;
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(ii) Production worker wages, inventor wages and the distribution of workers across regions, sectors and

occupations are constant, prices are falling at rate gp =
1
θ

∑
k ι
kgk and the expected value of workers is rising

at rate gv =
1+ζ
ζ

1
θ

∑
k ι
kgk.

The first part of the proposition demonstrates how arbitrary and heterogeneous regional innovation rates

(γkr = Tk
r

λkr
) and region-pair idea diffusion speeds (δro) deliver a balanced growth path characterized by parallel

growth at the sectoral rate gk, alongside persistent level differences in technology T k across regions for each

sector. Notably, reduced communication costs resulting from the ICT shock directly impact aggregate

growth, in addition shaping the geography of innovation. More broadly, since any spatial distribution of

innovation rates is consistent with a balanced growth path, my model can flexibly accommodate a wide

range of alternative mechanisms that influence the geography of innovation in other contexts.

The second part of the proposition describes how the remaining variables in the economy evolve along

the balanced growth path. Specifically, the growth rate of the expected value of workers, which captures

the aggregate growth rate of the economy, is an explicit function of the growth rates of technology in

different sectors, while the steady-state distribution of workers determines heterogeneous innovation rates

across regions and sectors. This steady-state distribution of workers, in turn, is shaped by the exogenous

fundamentals of the economy, including bilateral idea diffusion speeds, migration costs, trade costs, and

research productivities. The equilibrium expressions for innovation rates, inventor wages and other variables

are provided in Appendix C.8.

4.2 Transition Path

Beyond balanced growth, I characterize the transition path to illustrate how the spatial distribution of

innovation and the overall economy gradually evolved following the ICT shock in the early 1990s by extending

the dynamic hat algebra methodology developed by Caliendo et al. (2019). To align my model with observed

data on innovation levels and trade shares, which are available at most at an annual frequency, I introduce

additional assumptions that govern the timing of innovation and production. Specifically, while inventors

receive ideas from a Poisson process described in Section 3.1, a separate Poisson arrival process with rate

1 determines when inventors can produce their ideas. Additionally, an independent Poisson arrival process

with rate 1 governs when firms can produce goods. These Poisson processes ensure that production and

innovation occur at discrete moments in time, aligning with the frequency of observed innovation levels and

trade shares, even though the model operates in continuous time. Let x̃t = xte
−gxt denote the detrended

value, x̂t′ =
x̃t′
x̃t

represent changes in the detrended value for any variable x with growth rate gx, and

u = exp(V ). The transition path can then be fully characterized by changes in migration and trade costs –

as opposed to levels – alongside levels of research productivity and diffusion lags. This characterization is

formalized in the following proposition:
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Proposition 4. Given an initial distribution of workers, wages, technology levels, and migration and trade

shares
{
Lko,0, T

k
o,0, µ

ks,hn
od,0 , πkod,0

}N ;N ;{ICT,non-ICT};{G,R}

o=1;d=1;k,s;h,n
, exogenous trajectories of changes in migration and

trade costs, research productivity, and bilateral diffusion lags
{
κ̇ks,hnod,t , τ̇od,t, A

k
r,t, δro,t

}N ;N ;N ;{ICT,non-ICT};{G,R};∞

o=1;d=1;r=1;k,s;h,n;t=0
,

and additional Poisson processes that govern the timing of innovation and production, the transition path

of the economy is characterized by the evolution of the distribution of workers for all t∗, t, t′ ≤ T :

log
(
ûk,hd,t

)
= log

(
ŵk,hd,t

P̂d,t

)
+

1

Υ
log

[∑
n

[∑
s

∑
o

µks,hndo,t′

(
ûs,no,t′

) Υ
(1+ζ)υ

(
κ̂ks,hndo,t

)Υ
υ

]υ]
(39)

µks,hnod,t′ =
µks,hnod,t

(
ûs,nd,t′

) Υ
(1+ζ)υ

(
κ̂ks,hnod,t

)Υ
υ

∑
n′
µks,hn

′

od,t

(
ûs,n

′

d,t′

) Υ
(1+ζ)υ

(
κ̂ks,hn

′

od,t

)Υ
υ

·

[∑
n′
µks,hn

′

od,t

(
ûs,n

′

d,t′

) Υ
(1+ζ)υ

(
κ̂ks,hn

′

od,t

)Υ
υ

]υ
∑
n′

[∑
d′

∑
s′
µks

′,hn′

od′,t

(
ûs

′,n′

d′,t′

) Υ
(1+ζ)υ

(
κ̂ks

′,hn′

od′,t

)Υ
υ

]υ (40)

Lk,hd,t′ =
∑
n

∑
s

∑
o

µks,hnod,t Ls,no,t (41)

where at each time t innovation levels are given by equation (9) and technology levels by:

λkr,t = Akt∗Ar,t∗
(
LRr,t∗

)α
Lk,Rr,t∗T

k
r,t∗

T ko,t =

N∑
r=1

∑
t∗∈Tt

0

Ωro,t∗(t− t∗)1−ρ · λkr,t∗ + T ko,0, (42)

with Tt0 as the set of innovation times t∗ from time 0 to time t, the trade equilibrium is given by:

πkod,t =
N∑
r=1

∑
t∗∈Tt

0

Ωro,t∗(t− t∗)
(
wk,Go,t τ

k
od,t

)− θ
1−ρ

∑
o′

Ωro′,t∗(t− t∗)
(
wk,Go′,t τ

k
o′d,t

)− θ
1−ρ

[∑
o′

Ωro′,t∗(t− t∗)
(
wk,Gr,t τ

k
ro′,t

)− θ
1−ρ

]1−ρ
λkr,t∗

∑
r′

∑
ť∈Tt

0

[∑
o′

Ωr′o′,ť(t− ť)
(
wk,Go′,t τ

k
o′d,t

)− θ
1−ρ

]1−ρ
λk
r′,ť

(43)

φkro,t =
N∑
d=1

∑
t∗∈Tt

0

Ωro,t∗(t− t∗)
(
wk,Go,t τ

k
od,t

)− θ
1−ρ

∑
o′

Ωro′,t∗(t− t∗)
(
wk,Go′,t τ

k
o′d,t

)− θ
1−ρ

[∑
o′

Ωro′,t∗(t− t∗)
(
wk,Gr,t τ

k
ro′,t

)− θ
1−ρ

]1−ρ
λkr,t∗

∑
r′

∑
ť∈Tt

0

[∑
o′

Ωr′o′,ť(t− ť)
(
wk,Go′,t τ

k
o′d,t

)− θ
1−ρ

]1−ρ
λk
r′,ť

(44)

P kd,t = Γ

 N∑
r′=1

∑
t∗∈T

[
N∑
o′=1

Ωr′o′,t∗(t− t∗)
(
wk,Go′,t τ

k
o′d,t

)− θ
1−ρ

]1−ρ
λkr′,t∗

− 1
θ

(45)

1 + θ

θ
wk,Go,t L

k,G
o,t =

∑
d

πkod,tι
k

[∑
k

(
wk,Gd,t L

k,G
d,t +

∑
r

φkdr,t
1 + θ

θ
wk,Gr,t L

k,G
r,t

)]

where the market clearing condition comes from equation (35), and the wages of inventors, returns to inno-

vation and the probability that goods sold in destination d at time t′ uses ideas discovered in region r at time
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t are given by:

wk,Rr,t = AktAr,t

(
Lk,Rr,t

)α
T kr,tV̌

k
r,t =

V̌ k
r,tλ

k
r,t

Lk,Rr,t
(46)

V̌ k
r,t =

∑
t′∈T∞

t

(
1

1− ρ

)t′−t N∑
d=1

Xk
d,t′

1 + θ
· Pr,t
Pr,t′

·
ϕkrd,tt′

λkl,t
(47)

Xk
d,t′ = ιk

[∑
k

(
wk,Gd,t′ L

k,G
d,t′ +

∑
l

φkdr,t′
1 + θ

θ
wk,Gr,t′ L

k,G
r,t′

)]
(48)

ϕkrd,tt′ =

[∑
o′

Ωro′,t(t
′ − t)

(
wkr,t′τ

k
ro′,t′

)− θ
1−ρ

]1−ρ
λkr,t

∑
r′

∑
ť∈Tt′

−∞

[∑
o′

Ωr′o′,ť(t
′ − ť)

(
wko′,t′τ

k
o′d,t′

)− θ
1−ρ

]1−ρ
λk
r′,ť

(49)

and the growth rate of prices is given by gp = 1
θ

∑
k ι
kgk with gk as the Perron-Frobenius root of equation

(38), as described in Proposition 3.

The equilibrium conditions on the transition path illustrate the mechanics of innovation in dynamic spatial

equilibrium. The evolution of the distribution of workers across regions, sectors, and occupations – given

by equations (40) and (41) – along with exogenous research productivities, determine the trajectory of

innovation and technology levels given by equations (9) and (42). The trajectory of innovation levels,

along with exogenous bilateral diffusion lags, determine the trade equilibrium for each production time,

as characterized by equations (43)-(45) and (35). In particular, the market clearing condition pins down

contemporaneous production worker wages. The trade equilibrium also yields the probability that goods

produced in region o at time t′ uses ideas discovered in region r at time t, given by equation (49). Trajectories

of this probability determine incentives to innovate, captured by the value of individual ideas in equation

(47) and hence inventor wages in equation (46). In turn, the wages of production workers and inventors

determine the incentives of workers to migrate – given by equation (39) – and hence determine the evolution

of the distribution of workers across regions, sectors, and occupations.

Notice that the trade equilibrium cannot be expressed in time differences. This is because trade shares

depend on the entire trajectory of past innovations, rather than just the contemporaneous technology stock.

Thus, in principle, information on levels of exogenous trade costs are required to obtain the transition path.

However, given data on wages and trade shares in the initial period – where the economy is assumed to be

in steady state and all prior ideas have fully diffused – initial trade costs can be obtained from equation

(43), which collapses to the canonical Eaton-Kortum trade shares:

πkod,0 =
T ko,0

(
wko,0τ

k
od,0

)−θ
N∑
o′=1

T ko′,0

(
wko′,0τ

k
o′d,0

)−θ .
Hence, simulating the transition path only requires changes in trade costs, because these changes can be
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converted to levels given initial trade costs. Note also that the trade equilibrium does not contain detrended

variables. This is because production worker wages are constant on the balanced growth path and can be

determined without the sectoral price index, which declines over time.

4.3 Welfare Impacts of the ICT Shock

Given the characterizations of the balanced growth and transition paths, I now decompose the welfare

impact of the ICT shock, or any arbitrary anticipated sequence of counterfactual changes in fundamentals

into transitory and long-run growth components. Let x́ denote the counterfactual path and ẍt′ =
̂́xt′
x̂t′

=
´̃xt′/

´̃xt
x̃t′/x̃t

denote counterfactual changes for any variable x. Define the welfare impact in market (d, k, h) of

an anticipated sequence of counterfactual changes in fundamentals from time t = 0 as the compensating

variation in consumption for market (d, k, h), log δk,hd , given by the following equation:

V́ k,h
d,0 = V k,h

d,0 +
∑
t′∈T∞

0

(
1

1 + ζ

)t′
log δk,hd .

Using these notations and definition of welfare, the impact of an anticipated sequence of counterfactual

changes in fundamentals is given by the following corollary:

Corollary 3. Given the transition and balanced growth paths, the welfare effects in each market (i.e.

region-sector-occupation) of an anticipated counterfactual change in fundamentals is given by:

log
(
δk,hd

)
=
∑

t′∈TR+

(
1

1 + ζ

)t′
log

(
ẅk,hd,t

P̈d,t︸ ︷︷ ︸
change in
future

detrended
real wages

1(
¨µkkdd,t

)1/Υ ( ¨
µkk,hhdd,t |µkkdd,t

)υ/Υ
︸ ︷︷ ︸
change in option value of migration

)
+

1

θ

∑
k

ιk
(
ǵk − gk

)
︸ ︷︷ ︸

growth effects

. (50)

while local and aggregate welfare is defined as the population-weighed average of the welfare impacts in the

relevant markets.

There are two key differences in this welfare expression relative to Caliendo et al. (2019). First, the option

value of migration is given by both the own-migration share across region-sectors as well as the conditional

own-migration share across occupations, since the idiosyncratic preferences of workers for each occupation is

correlated across region-sectors. Second, the welfare expression includes impacts on long-run growth, since

a counterfactual change in fundamentals has both transitory and long run effects in my model.
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5 Conclusion

The rise of high-tech clusters over the past half-century has been a central focus of research on the geography

of innovation and a frequent topic in the popular press. Despite extensive attention, the fundamental drivers

of this trend have remained elusive, partly due to the wide range of potential explanations.

I tackle this perennial question by leveraging comprehensive data on patents, firms, and inventors from

1976 to 2018 to precisely document when and where innovation became more spatially concentrated. My

findings reveal that this rising concentration occurred predominantly in high-skill cities and began only

after 1990, suggesting that a significant shock around 1990 triggered the rise of high-tech clusters. Through

detailed decompositions and micro-level evidence, I find that the rapid rise of information and communication

technologies (the ICT shock) from 1990 explains most of this trend through two distinct channels. First,

there was a compositional shift in innovation towards ICT, which is colocated with the ICT service sector

and concentrated in high-skill cities. Second, firms initially concentrated in high-skill cities produced more

non-ICT patents due to spillovers from ICT innovation and an asymmetric scale effect arising from reduced

communication costs enabled by ICT – these firms disproportionately expanded production to lower-cost

regions relative to others, enhancing the profitability of new ideas.

To better understand the central mechanisms – colocation, spillovers, and the asymmetric scale effect –

shaping the geography of US innovation following the ICT shock, I develop a model of spatial growth that

integrates endogenous innovation with technology diffusion at the level of individual ideas. In my model, the

ICT shock is characterized by two exogenous components: the rising productivity of ICT innovation, which

captures the compositional shift of innovation toward ICT, and falling bilateral diffusion speeds, reflecting

reduced communication costs. The theory incorporates spillovers from ICT to non-ICT innovation through

the idea production function and offers analytical characterizations of two key mechanisms: (i) the degree

of colocation between innovation and production, and; (ii) the asymmetric scale effect, whereby a uniform

increase in diffusion speeds across all region-pairs disproportionately benefits high-skill cities due to greater

increases in idea market access. An additional advantage of my model is its ability to address the aggregate

consequences of the ICT shock. Along the transition path, the ratio of real wages from innovation across

regions captures the incentives for workers mobility, which in turn drives the spatial direction of innova-

tion. Along the balanced growth path, prices in all regions fall at the same aggregate rate, endogenously

determined by the steady state distribution of innovation rates. I then use these characterizations of the

balanced growth and transition paths to analytically decompose the welfare impact of the ICT shock into

its transitory and long-run growth components.

More broadly, my model integrates endogenous and directed innovation into existing dynamic spatial models

in a highly tractable manner, offering methodological tools to explore the mechanics of innovation across

space. This paper thus establishes the foundation for a broader research agenda on the spatial and network

aspects of innovation. Leveraging these methodology tools, my ongoing work includes examining the causes

and consequences of the concentration of newer technology vintages in big cities and the rise of cross-region

coinventor collaborations since 1976.

40



References

Acemoglu, D. (1998). Why Do New Technologies Complement Skills? Directed Technical Change and Wage

Inequality. The Quarterly Journal of Economics, 113(4):1055–1089.

Acemoglu, D. (2002). Directed Technical Change. Review of Economic Studies, 69(4):781–809.

Acemoglu, D. (2007). Equilibrium Bias of Technology. Econometrica, 75(5):1371–1409.

Akcigit, U., Grigsby, J., Nicholas, T., and Stantcheva, S. (2021). Taxation and Innovation in the Twentieth

Century. The Quarterly Journal of Economics, 137(1):329–385.

Allen, T. and Arkolakis, C. (2014). Trade and the Topography of the Spatial Economy. Quarterly Journal

of Economics, (2002):1085–1139.

Alvarez, F. and Lucas, R. E. (2007). General equilibrium analysis of the Eaton-Kortum model of international

trade. Journal of Monetary Economics, 54(6):1726–1768.

Andrews, M. J. and Whalley, A. (2021). 150 Years of the Geography of Innovation. Regional Science and

Urban Economics, 94(December 2020):103627.

Arcidiacono, P., Bayer, P., Blevins, J. R., and Ellickson, P. B. (2016). Estimation of Dynamic Discrete

Choice Models in Continuous Time with an Application to Retail Competition. The Review of Economic

Studies, 83(3):889–931.

Autor, D. H. and Dorn, D. (2013). The Growth of Low-Skill Service Jobs and the Polarization of the US

Labor Market. American Economic Review, 103(5):1553–97.

Ben-Akiva, M. and Francois, B. (1983). Mu-homogenous generalized extreme value model. Technical report,

Working paper, Department of Civil Engineering, MIT.

Bernard, A. B., Eaton, J., Jensen, J. B., and Kortum, S. (2003). Plants and Productivity in International

Trade. American Economic Review, 93(4):1268–1290.

Bikard, M. and Marx, M. (2020). Bridging Academia and Industry: How Geographic Hubs Connect Uni-

versity Science and Corporate Technology. Management Science, 66(8):3425–3443.

Buera, F. J. and Oberfield, E. (2020). The Global Diffusion of Ideas. Econometrica, 88(1):83–114.

Cai, J., Li, N., and Santacreu, A. M. M. (2021). Knowledge Diffusion, Trade, and Innovation across Countries

and Sectors (Working Paper). SSRN Electronic Journal.

Cai, S., Parro, F., Caliendo, L., and Xiang, W. (2022). Mechanics of Spatial Growth. Working Paper, pages

1–108.

Caliendo, L., Dvorkin, M., and Parro, F. (2019). Trade and Labor Market Dynamics: General Equilibrium

41



Analysis of the China Trade Shock. Econometrica, 87(3):741–835.

Caliendo, L. and Parro, F. (2015). Estimates of the Trade and Welfare Effects of NAFTA. Review of

Economic Studies, 82(1):1–44.

Choi, K.-H. and Moon, C.-G. (1997). Generalized extreme value model and additively separable generator

function. Journal of Econometrics, 76(1-2):129–140.

Desmet, K., Nagy, D. K., and Rossi-Hansberg, E. (2018). The Geography of Development. Journal of

Political Economy, 126(3):903–983.

Diamond, R. (2016). The Determinants and Welfare Implications of US Workers’ Diverging Location Choices

by Skill: 1980–2000. American Economic Review, 106(3):479–524.

Dreisigmeyer, P., Goldschlag, N., Krylova, M., Ouyang, W., and Perlman, E. (2018). Building a Better

Bridge: Improving Patent Assignee-Firm Links. CES Technical Notes Series, (1).

Eaton, J. and Kortum, S. (1999). International technology diffusion: Theory and measurement. International

Economic Review, 40(3):537–570.

Eaton, J. and Kortum, S. (2001). Technology, trade, and growth: A unified framework. European Economic

Review, 45:742–755.

Eaton, J. and Kortum, S. (2002). Technology, Geography, and Trade. Econometrica, 70(5):1741–1779.

Eaton, J. and Kortum, S. (2024). Technology and the Global Economy. Annual Review of Economics

[Forthcoming].

Eckert, F., Fort, T., Schott, P., and Yang, N. (2020). Imputing Missing Values in the US Census Bu-

reau’s County Business Patterns. Technical Report w26632, National Bureau of Economic Research,

Cambridge, MA.

Ellison, G. and Glaeser, E. L. (1997). Geographic Concentration in U.S. Manufacturing Industries: A

Dartboard Approach. Journal of Political Economy, 105(5):889–927.

Feldman, M. P. and Kogler, D. F. (2010). Stylized Facts in the Geography of Innovation, volume 1. Elsevier

B.V.

Fort, T. C., Keller, W., Schott, P. K., Yeaple, S., and Zolas, N. (2020). Colocation of Production and

Innovation: Evidence from the United States. Working Paper.

Greenstein (2015). How the Internet Became Commercial: Innovation, Privatization, and the Birth of a

New Network. Princeton University Press.

Hall, B. H., Jaffe, A. B., and Trajtenberg, M. (2001). The NBER Patent Citation Data File: Lessons,

Insights and Methodological Tools. NBER Working Paper.

42



Hsieh, C.-T. and Rossi-Hansberg, E. (2021). The Industrial Revolution in Services.

Jiang, X. (2023). Information and Communication Technology and Firm Geographic Expansion. Working

Paper.

Jones, C. I. (1995). R&D-Based Models of Economic Growth. Journal of Political Economy, 103(4):759–784.

Kelly, B., Papanikolaou, D., Seru, A., and Taddy, M. (2021). Measuring Technological Innovation over the

Long Run. American Economic Review: Insights, 3(3):303–20.

Kerr, W. R. and Fu, S. (2008). The survey of industrial R&D—patent database link project. The Journal

of Technology Transfer, 33(2):173–186.

Kingman (1992). Poisson Processes, volume 3. Clarendon Press.

Kleinman, B. (2022). Wage Inequality and the Spatial Expansion of Firms. Working Paper.

Kleinman, B., Liu, E., and Redding, S. J. (2023). Dynamic Spatial General Equilibrium. Econometrica,

91(2):385–424.

Kortum, S. (1997). Research, Patenting, and Technological Change. Econometrica, 65(6):1389–1419.

Li, G. C., Lai, R., D’Amour, A., Doolin, D. M., Sun, Y., Torvik, V. I., Yu, A. Z., and Lee, F. (2014).

Disambiguation and co-authorship networks of the U.S. patent inventor database (1975-2010). Research

Policy, 43(6):941–955.

Lind, N. and Ramondo, N. (2023a). Global Innovation and Knowledge Diffusion. American Economic

Review: Insights, 5(4):494–510.

Lind, N. and Ramondo, N. (2023b). Trade with Correlation. American Economic Review, 113(2):317–353.

Lind, N. and Ramondo, N. (2024). Global Knowledge and Trade Flows: Theory and Measurement. Journal

of International Economics [forthcoming].

Liu, J. (2024). Multinational Production and Innovation in Tandem. Working Paper.

McFadden, D. (1978). Modeling the Choice of Residential Location, pages 75–96. North Holland, Amsterdam.

Moretti, E. (2013). Real Wage Inequality. American Economic Journal: Applied Economics, 5(1):65–103.

Moretti, E. (2021). The Effect of High-Tech Clusters on the Productivity of Top Inventors. American

Economic Review, 111(10):3328–3375.
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A Details of Data

Here, I provide detailed information about the data sources I used to measure and document fundamental

trends in the geography of innovation in the United States, emphasizing my newly constructed six broad

fields from technology classes under the Cooperative Patent Classification (CPC) scheme.

A.1 Patent Data and Cleaning Procedures

Patent data comes from bulk files from the US Patent Trademark Office (USPTO) and US PatentsView

(USPV) (https://patentsview.org/). The datasets contain the universe of patents granted in the US (by

the USPTO) from 1976-2022. I use only utility patents – which comprise about 95% of all granted patents

from 1976 – as they are patents for inventions and provide the most appropriate measure of technological

advancements, as opposed to other types of patents such as design, plant, and defensive patents. As explained

by the USPTO Patent Technology Monitoring Team (PTMT)25:

Most analyses of technological activity that incorporate patent data will focus on the activity of

utility patents, also known as “patents for inventions”. Since design patents are granted for or-

namental designs for articles of manufacture and not for inventions, they are usually perceived to

have a lesser relationship with technological activity. Similarly, statutory invention registrations

and defensive publications do not convey patent protection to disclosed inventions and may have

a lesser relationship with technological activity. Plant patents may or may not disclose an inven-

tion resulting from technological activity; however, plant patents are numerically small relative

to utility patents and are usually handled and analyzed separately.

Inventors, assignees, and locations are disambiguated by USPV – meaning each inventor, assignee, and

city-state pair has a unique ID over time – using the latest machine learning techniques, improving on the

algorithms used in Li et al. (2014) and to produce the Connecting Outcome Measures in Entrepreneurship,

Technology, and Science (COMETS) database. Cities and states of all inventors living in the US are

provided26. I use the Google Maps API to geocode all locations and assign them to counties, and standard

publicly-available crosswalks to convert counties to commuting zones (CZs) [using Autor and Dorn (2013)],

core-based statistical areas (CBSAs), and combined statistical areas (CSAs). The high spatial resolution of

inventor locations allows me to conduct my analysis at different geographical scales.

I define the patent year as the application year since that is the closest to when the invention was produced,

as there are often lags of several years between when a patent was applied and when it was granted. I assign

patent shares, citations made, and citations received equally across all coinventors on a patent. I keep only

patents where at least one inventor lives in the US.

25The USPTO PTMT explanation on the conventions of treating different types of patents can be found at
https://www.uspto.gov/web/offices/ac/ido/oeip/taf/reports.htm. Should this or any of the subsequent web links become inac-
tive, PDF copies of the contents of the archived websites that includes the date of access will be provided upon request.

26Prior studies have typically only used the state of the first inventor on patents.
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A.2 Classification of Patents into Technology Fields and Subfields

Patents are assigned to 3-digit technology classes, 4-digit subclasses, and further divided into groups within

subclasses under the International Patent Classification (IPC) and Cooperative Patent Classification (CPC)

systems. The IPC provides a hierarchical system of language independent symbols for the classification of

patents into eight sections with approximately 70,000 subdivisions. The IPC was developed under the 1971

Strasbourg Agreement and provides a common classification for patents filed in different patent offices around

the world. The CPC is a unified system developed jointly by the United States Patent Trademark Office

(USPTO) and European Patent Office (EPO) on 2010 to provide a common, internationally compatible

classification system that provides more groups and subgroups relative to the IPC. For patents granted in

the US, the CPC supercedes the US Patent Classification (USPC) developed by the USPTO and the NBER

patent classification developed by Hall et al. (2001). The USPTO no longer provides the USPC and NBER

patent classifications for patents granted after 201527.

Most patents have more than one field classification to facilitate easier searches to prior art. Nonetheless,

under the CPC, each patent has a unique primary field classification, denoted as the “first” position28.

Other classifications are denoted as having a “later” position. USPTO Guideline 905.03(a)III.A.(C)29 states

that:

There is one and only one “first” position attribute per patent family. The first attribute is

associated with the invention symbol that most completely covers the technical subject matter of

the disclosed invention. The first position symbol is identified as the first mandatory symbol listed

on the classification form.

The USPTO provides a bulk file of all granted patents from 1790 with their current CPC classes and position

of each CPC class30. I use the 08/02/2022 version, downloaded on 09/09/202231. Just as Akcigit et al. (2021)

use the primary USPC class of each patent, I use the primary CPC class of each patent. In rare cases where

there are multiple CPC classes listed as the “first” position, I use the class that is listed first. In rare cases

where the CPC class listed in the “first” position is only meant as an additional classification as noted under

the details of the CPC class in their classification documentation32, I use the class in the “later” position

that is listed first.

Under the IPC and CPC, the technology subclasses are grouped into 8 broad sections. These broader sections

facilitate the allocation of patents to different examiner units at patent offices. However, some sections

contain patents from highly disparate economic fields. For example, Section A includes patents

27Most papers in empirical innovation use the superceded USPC classification and focus on patents granted before 2015.
28Several prior studies have incorrectly claimed that there is no primary field classification under the CPC.
29The USPTO guidelines on the CPC scheme can be found at https://www.uspto.gov/web/offices/pac/mpep/s905.html
30The bulk files containing the CPC classification of every patent can be found at

https://bulkdata.uspto.gov/data/patent/classification/cpc/
31Although USPV provides CPC classes and technology fields for most patents granted since 1976, data checks I conducted

in Summer 2022 indicate that the 2022 vintages of the USPV datasets contain errors in approximately 3–5% of patents for CPC
classes and WIPO technology fields.

32The CPC classification documentation can be found at https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html.
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for medical technologies and amusement parks. To provide more consistent categories with similar

sizes, the World Intellectural Property Organization (WIPO) developed a mapping from the 4-digit technol-

ogy subclasses and groups in the IPC/CPC to 35 fields (Schmoch, 2008). This WIPO report also provides 6

broad categories, but the broad category “Instruments” is difficult to interpret and the “Electrical Engineer-

ing” category includes fields in information technology as well as older electrical machinery. Thus, I provide

an alternative mapping of these 35 WIPO fields into 6 broad categories: (1) Physics, Electrical Engineering

& Electronics; (2) Information Technology; (3) Chemistry; (4) Biology & Medicine; (5) Mechanical Engi-

neering; (6) Civil Engineering & Consumer Goods. These categories are similar in scope to the older field

classifications in the NBER and COMETS datasets and may be seen as an updated version of them.

The IPC/CPC class to WIPO field concordance is primarily at the level of 4-digit technology subclasses,

but there are 6 subclasses with different groups that map to different WIPO fields – A61K, B01D, C13B,

E01F, G01N, H04N – due to significantly different subject matter across groups within these subclasses. For

example, within the subclass A61K, there are patents for cosmetics and patents for medical technologies.

Thus, I provide a further decomposition for these 6 subclasses that corresponds to the WIPO field they

are assigned to. My added subclasses are: A61K-14; A61K-16; B01D-23; B01D-24; C13B-18; C13B-29;

E01F-24; E01F-35; G01N-10; G01N-11; H04N-2; H04N-3; H04N-4. The numbers after the hyphen refer to

the WIPO fields that groups within each subclass are assigned to. Thus, my data has 586 technology classes,

comprising the 579 CPC/IPC subclasses along with this decomposition of 6 subclasses. In this paper, I refer

to the 35 World Intellectural Property Organization (WIPO) fields as “subfields”, my 6 broad categories as

“fields”, and the 579 CPC/IPC subclasses and 7 additional group categories as “classes”.

A.3 Data Sources for Regional Outcomes

I use data on county-level educational attainment for each decade from the Economic Research Service

(ERS) of the US Department of Agriculture (USDA) to construct the college ratio and percent of workers

that are college educated for each CZ in 1970, 1980, 1990, 2000, 2010 and 2017. The 1970, 1980, 1990 and

2000 data are constructed from the Decennial Censuses of Population and equivalent to the 5% samples

from the IPUMS used by Moretti (2013); Diamond (2016) to construct college percent and ratio respectively

for metropolitan statistical areas (MSAs) in 1980 and 2000. The 2010 and 2017 data are constructed from

5-year averages from the annual American Community Survey (ACS).

I obtain annual county-level employment by NAICS industry for 1975-2018 from the harmonized County

Business Patterns (CBP) Database produced by Eckert et al. (2020). They develop a linear programming

method to impute suppressed county-industry-year cells in raw CBP files released by the US Census Bureau

and show that total non-agricultural employment from their dataset is highly correlated with the panel

from the Longitudinal Business Database (LBD). I use their county-industry employment panel to construct

my primary measures for the annual industrial composition of each CZ and the United States, such as

the employment share in the ICT service sector. Building on Fort et al. (2020), I define the ICT service

sector to include the following industries in the Information Sector (NAICS 51): Software Publishers (5112);
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Telecommunications (517); Data Processing, Hosting, and Related Services (518).

I also obtain annual county-level data on income and resident population for 1969-2018 from the BEA to

construct basic annual measures of each CZ such as income per capita and population density.

B Additional Empirical Results

B.1 Additional Details on Fact 1 (Rising Concentration in High-Skill CZs from 1990)

Figure 16 presents robustness checks on the trend in the aggregate spatial concentration of innovation in

Figure 1 in the main paper. The spatial concentration of innovation only started rising in 1990, whether

I drop top patenting CZs (left graph) or use alternative measures of spatial concentration such as the

Herfindahl index, coefficient of variation, simplified Ellison-Glaeser measure of patent shares (middle graph),

or the annual share of patents produced by the top 10 CZs (right graph).

Figure 16: Robustness of trends in the spatial concentration of innovation across CZs. The top left graph plots trends
in the locational Gini index of patents with respect to population and college-educated workers after removing top
CZs in innovation: San Jose, San Francisco, Newark, and Los Angeles. The middle graph plots trends in alternative
measures of spatial concentration, such as the Herfindahl index (blue dashed line), coefficient of variation (light blue
dotdashed line), and simplified Ellison-Glaeser measure (black solid line) of patent shares. The right graph plots trends
in the annual share of patents produced by the top 10 CZs.

Table 1 lists the top 15 CZs by changes in patent share per unit population share between 5-year averages

around 1990 and 2015. Apart from well-known superstar cities such as San Jose, San Franciso, San Diego,

Seattle and Boston, CZs like Portland, Boise, Wayne, Provo and Fort Collins also became some of the most

innovative regions in the US from 1990-2015. Despite narratives of the apparent collapse of innovation

in Rochester in several papers and the popular press, the region actually experienced the second greatest

increase in patenting intensity from 1990-2015.

Figure 17 plots trends in the annual elasticity of CZ patents per capita with respect to the 1990 population

(left graph) and population density (right graph). The left graph shows that the annual elasticity of patents

per capita with respect to the 1990 population increased moderately from 1990-2018, these increases did not
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CZ

Change in
patent share
per unit
pop share
1990-2015

Patent share
per unit
pop share

Rank of
patent share
per unit
pop share

Patent
Share

Patents Population

1 San Jose 9.494 12.421 1 0.104 14581.5 2684061
2 Rochester 3.608 4.618 2 0.004 531.4 263093
3 San Francisco 3.029 4.440 3 0.073 10153.8 5229363
4 San Diego 2.094 3.430 5 0.035 4882.0 3254818
5 Seattle 2.063 2.955 8 0.043 5974.0 4622131
6 Portland 1.618 2.523 11 0.018 2521.7 2285666
7 Boise 1.411 1.962 18 0.004 604.7 704711
8 Raleigh 1.398 2.282 13 0.015 2064.7 2068936
9 Wayne 1.396 2.303 12 0.001 132.5 131541
10 Austin 1.258 2.959 7 0.019 2660.2 2055406
11 Provo 1.232 1.763 19 0.003 467.1 605648
12 Bloomington 1.186 1.587 25 0.001 157.2 226557
13 Burlington 1.167 2.224 14 0.002 333.9 343199
14 Boston 0.885 2.730 9 0.046 6488.4 5434761
15 Fort Collins 0.871 1.756 20 0.004 495.9 645656

Oneonta -0.944 4.414 4 0.002 300.3 155554
Albany 0.466 2.959 6 0.010 1461.1 1128888
Elmira 0.341 2.627 10 0.003 401.9 349814

Poughkeepsie 0.554 2.185 15 0.006 897.9 939410
Minneapolis 0.192 2.021 16 0.021 2989.4 3381353

Detroit 0.588 1.967 17 0.032 4510.1 5243719

Table 1: The top 15 CZs by change in patent share per unit population share from 1990-2015 with a population of at
least 100,000 in 2015. To minimize the effect of idiosyncratic fluctuations, I take five-year averages around 1990 and
2015. I append this list with the 6 CZs that are in the top 20 by patent share per unit population share in 2015 but
did not experience the greatest increase from 1990-2015.

overcome the decrease in annual elasticity from 1976-1990. The right graph shows that annual elasticity of

patents per capita with respect to the 1990 population density did not increase after 1990.

B.2 Additional Details on Fact 2 (the ICT Shock): History of the NSFNET

The National Science Foundation Network (NSFNET), developed between 1986 and 1995, was created to

facilitate collaboration among researchers at universities and military bases across the United States. It

eventually became a crucial bridge between ARPANET – the first public packet-switched computer network

operated by the Defense Advanced Research Projects Agency from 1969 to 1989 – and the commercial

networks that began providing internet access to the public, particularly during the internet boom starting

in 1995.

The history of the NSFNET is defined by five key events:
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Figure 17: Trends in the annual elasticity of CZ patents per capita with respect to the 1990 population (left) and 1990
population density (right).

� Initial establishment: In 1985, the NSF funded the creation of five supercomputing centers. In 1986, it

established a long-haul backbone network with a data speed of 56 Kbps, connecting these new centers

to the existing supercomputing facility at the National Center for Atmospheric Research.

� First round of upgrading: On June 15, 1987, the NSF issued a solicitation to upgrade and expand the

backbone network, addressing the overwhelming demand that had saturated the existing infrastructure.

On November 24, 1987, a contract was awarded to a team comprising IBM, MCI, Merit, and the

University of Michigan. By July 1988, the upgraded T1 backbone was completed, increasing the

number of backbone sites from 6 to 13 and raising network speeds to 1.5 Mbps. The upgraded

backbone also enabled connections to regional and campus networks. Each partner played a specific

role: Merit developed user support and information services, IBM provided hardware, software, and

network management tools, and MCI supplied transmission circuits with reduced tariffs.

� Second round of upgrading: In 1991, the NSF completed the upgrade from the T1 network to a T3

network, increasing the broadband speed to 45 Mbps and adding three new backbone sites.

� Privatization: Discussion about privatization began quietly in 1989 and become public by 1990. In

March 1991, the Acceptable Use Policy – which previously required the network to be

used solely for research and education – was revised to allow private users. In 1992, the

NSF announced plans to decommission the NSFNET by 1995. By May 1993, it issued a solicitation

to encourage more companies to contribute to the development of the Internet’s privatized structure33

� Decommission: 1995

The most significant event in the history of the NSFNET for U.S. patenting – predominantly conducted by

33Taken from Kesan, Jay P., and Rajiv C. Shah. 2001. “Fool Us Once, Shame on You—Fool Us Twice, Shame on Us:
What We Can Learn from the Privatizations of the Internet Backbone Network and the Domain Name System.” Washington
University Law Quarterly 79: 89–220.
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private firms – was the modification of the Acceptable Use Policy in March 1991. This change granted firms

access to the NSFNET, significantly reducing their communication costs. Table 2 lists the NSFNET nodes,

including the year each was established and the commuting (CZ) in which it is located.

S/N NSFNET Node Location CZ CZ Name Year Selected Universities

1
John von Neumann Center

in Princeton, NJ
19600 Newark 1986 Princeton University

2
Cornell Theory Center

in Ithaca, NY
18100 Elmira 1986 Cornell University

3
Pittsburgh Supercomputing Center

in Pittsburgh, PA
16300 Pittsburgh 1986

Carnegie Mellon University,
University of Pittsburgh

4
San Diego Supercomputer Center

in San Diego, CA
38000 San Diego 1986 UC San Diego

5
National Center for Supercomputing

Applications in Urbana, IL
23500 Decatur 1986

University of Illinois,
Urbana-Champaign

6
National Center for Atmospheric Research

in Boulder,CO
28900 Denver 1986

University of Colorado Boulder,
Colorado School of Mines

7 Palo Alto, CA 37500 San Jose 1988 Stanford University

8 Houston, TX 32000 Houston 1988 Rice University

9 Ann Arbor, MI 11600 Detroit 1988 University of Michigan at Ann Arbor

10 College Park, Maryland 11304 Washington DC 1988
Georgetown University,
University of Maryland

11 Salt Lake City, UT 36100 Salt Lake City 1988

12 Seattle, WA 39400 Seattle 1988

13 Lincoln, NE 28101 Lincoln 1988

14 Cambridge, MA 20500 Boston 1991
Harvard University, MIT,

Tufts University

15
Argonne National Laboratory

in Lemont, IL
24300 Chicago 1991

University of Chicago,
Northwestern University

16 Atlanta, Georgia 9100 Altanta 1991 Emory University

Table 2: List of NSFNET backbone nodes

B.3 Additional Details on Fact 3 (Field Decomposition)

Here I present results from my decomposition of the Gini coefficient, as well as robustness on most results

when dropping top patenting CZs.
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B.3.1 Decomposition of the Rising Gini Coefficient of Patents per capita from 1990 into

Within-Field and Cross-Field Components

I decompose changes over time in the overall Gini coefficient G of patents per capita from 1990-2018 into

within-field, cross-field, and field colocation components:

Gt∗ −G1990 =

t=t∗∑
t=1991

∆Gt =

t=t∗∑
t=1991

[∑
f

Gf,t∆sf,t︸ ︷︷ ︸
changes in field
composition

+
∑
f

sf,t∆Gf,t︸ ︷︷ ︸
within-field
changes

+∆

(
Gt −

∑
f

sf,tGf,t

)
︸ ︷︷ ︸

changes in the
colocation of fields

]

where Gf,t is the Gini coefficient of patents in field f with respect to population across CZs in year t, sf,t is

the share of US patents in field f in year t, and xt =
xt+xt−1

2 , ∆xt = xt − xt−1 for any variable x. The first

term captures the role of changes in the field composition of US patents. This term is positive if patents are

increasingly produced in fields that are more spatially concentrated. The second term captures the role of

changes in the spatial concentration of patents within fields. The third term captures the role of changes in

the colocation of fields, measured by differences in the overall locational Gini coefficient of all CZ patents

with respect to CZ population from a weighted mean of the field-specific locational Gini coefficients.

Figure 18: Trends in the decomposition of changes in the locational Gini coefficient of patents with respect to population
relative to 1990. The left graph plots trends in the overall decomposition into within-field, across-field, and field
colocation components while the middle and right graphs further decompose the cross-field and within-field components
respectively into the contribution of each individual field.

The left graph in Figure 18 plots trends in this decomposition: from 1990-2018, 52% of the rise in the spatial

concentration of innovation is driven by the changing field composition of patents, 41% by the rising spatial

concentration within fields, and 6% by the rising colocation of patents in different fields. The right graph

further decomposes the cross-field component into the contribution of each individual field and shows that

virtually all of the cross-field component is explained by the rising share of ICT patents.

Figure 19 breaks down ICT into its component subfields, and shows that most of the rising share of ICT

patents is driven by Digital Communications and Computer Technology. The top graphs decompose trends

in the changes in the aggregate locational Gini coefficient of CZ patents with respect to population into
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cross-subfield and within-subfield components (left) and the six leading subfields within the cross-subfield

component (right). The bottom graphs plot trends in the annual share of patents and the locational Gini

coefficient for these six subfields. These graphs show that the rising annual share of patents in Digital

Communication and Computer Technology accounts for most of the effects of the rising share of ICT patents

on the spatial concentration of innovation.

Figure 19: Trends in the subfield decomposition of changes in the aggregate locational Gini coefficient of patents
with respect to population. The top left graph plots trends in the decomposition of the aggregate locational Gini
coefficient into cross-subfield and within-subfield components. The top right graph plots trends in the top six subfields
by contribution to the overall cross-subfield component from 1990-2018. The bottom left graph plots the annual share
of patents in these six subfields. The bottom right graph plots the locational Gini coefficient of CZ patents with respect
to population for these six subfields.
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B.3.2 Robustness of Trends to Dropping Top Patenting CZs

Figure 20 shows that this rise is not just driven by the ICT hub in Silicon Valley. The top graphs plot

trends in the annual share of patents (left) and the locational Gini coefficient of CZ patents with respect to

population (right) by field – analogous to Figure 7 in the main paper – dropping San Jose and San Francisco.

The bottom graphs plot trends in the decomposition of the Gini coefficient of CZ patents with respect to

population (left) and a further decomposition of the cross-field component by field (right) – analogous to

Figure 18 – dropping San Jose and San Francisco. After dropping all patents produced in San Jose and SF,

66% of the overall increase (as opposed to 52% with San Jose and San Francisco) in the spatial concentration

of innovation is driven by the rise in ICT patents. Thus, these graphs show that the rising annual share

of ICT patents can explain a large percentage of the rising spatial concentration of innovation, even after

dropping the primary ICT hub in Silicon Valley.

Figure 20: Trends in the share of annual patents by field (top left), the Gini coefficient of CZ patents with respect
to CZ population by field (top right), decomposition of the overall Gini coefficient into within-field and cross-field
components (bottom left), and a further decomposition of the cross-field component into each individual field (bottom
right) after dropping San Jose and San Francisco.
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C Proofs and Extensions of Propositions and Lemmas

C.1 Lemma 1 (Productivity Distribution)

Proof. My microfounded structure of innovation and technology diffusion, outlined in equations (9)-(11), is

isomorphic to the independent multi-dimensional Poisson processes governing idea and applicability arrivals

in Lind and Ramondo (2024). Since the goods productivity distribution is derived exclusively from the

Poisson processes governing idea and applicability arrivals, my additions of endogenous innovation from

Eaton and Kortum (2001) and worker mobility from Caliendo et al. (2019) do not change the expression or

proof for the productivity distribution in Lind and Ramondo (2024) For more details on the multivariate

Fréchet productivity distribution, see Lind and Ramondo (2023b).

C.2 Lemma 2 (Trade Shares and Price Index)

Proof. See Lind and Ramondo (2024). Note that the trade shares and price index are derived exclusively from

the multivariate productivity distribution. Thus, like in Lemma 1, my additions of endogenous innovation

from Eaton and Kortum (2001) and worker mobility from Caliendo et al. (2019) to the model in Lind and

Ramondo (2024) also do not change their expressions for equilibrium trade and prices.

C.3 Lemma 3 (Expected Value of an Idea)

Proof. Total profits earned at time s in region d is given by Πkd,t =
Xk

d,t

1+θ , as described in equation 25. The

share of these profits from ideas discovered in region r at time t∗ is ϕkrd,t∗t. Since the flow rate of ideas

in region r at time t∗ is λkr,t∗ , the expected flow of profits at time s in region d of an idea discovered in

region r at time t∗ is
ϕk
rd,t∗t
λk
r,t∗

Xk
d,t

1+θ . Accounting for changes in the purchasing power in region r over time and

discounting future flows yields equation 26. Note that ϕkld,t∗t conditions on idea cohort and hence is a direct

measure on whether the idea remains the lowest cost one in destination d, thereby allowing for a slightly

simpler computation of value relative to Eaton and Kortum (2001).

C.4 Lemma 4 (Expected Worker Value and Worker Mobility Shares)

Proof. Note that the individual worker mobility problem, as defined by equations 30-31, represents a con-

tinuous time extension of Caliendo et al. (2019) (henceforth CDP) and incorporates switching between

production and research alongside mobility across regions and sectors. In what follows, I demonstrate how

the equilibrium mobility shares, as expressed in equation 33, can be derived under these extensions.

First, transitioning from discrete to continuous time with the possibility of worker movement complicates

the distinction between current versus future payoffs. To overcome this challenge, I assume that there is

a Poisson arrival process governing when workers can move, with an arrival rate of 1, as described in the

main text. This setup is a simplified version of Arcidiacono et al. (2016). With a Poisson arrival process

of rate 1, the time until the next arrival at t′ follows an exponential distribution with rate 1, where the

probability density function is given by e−(t′−t). The present value at time t of the payoff at time t′ is given
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by: Vt′e
−ζ(t′−t), where ζ is the discount rate. Thus, the expected value at time t of the payoff at time t′ is

given by:

Expected Payoff = Vt′ ·
� ∞

0
e−ζ(t

′−t)e−(t′−t) d(t′ − t) =
1

1 + ρ
Vt′ .

This is why the individual worker mobility problem in equation 30 has the discount factor 1
1+ρ . Note that

my formulation is a strict generalization of CDP. Though my discount factor 1
1+ρ is isomorphic to β in the

migration problem in CDP and Et(t′) = t+1, the actual migration time t′ is stochastic and depends on the

exact realization of the Poisson process for move arrivals.

Second, I incorporate switching between production and research, where individual-specific idiosyncratic

shocks for each market are drawn from a multivariate Gumbel or generalized extreme value distribution

with symmetric correlation between production and research across all region-sectors. The functional form

of this distribution is provided in equation 31, with the correlation function defined as:

F̌
({

exp
(
−ϵs,no,t

)}s={ICT,non-ICT},n={G,R}
o=1,...,N

)
=
∑
o

∑
s

(∑
n

exp
(
−ϵs,no,t

)Υ
υ

)υ
, (51)

where υ captures the correlation between production and research across region-sectors, and Υ is the scale

parameter that adjusts the sensitivity of expected value in production or research to differences in the

deterministic components of value in these activities. Note that this correlation function is homogeneous

of degree logΥ (instead of 1), similar to Ben-Akiva and Francois (1983), but otherwise retains the same

properties listed in McFadden (1978). I now use this correlation function to derive the option value of

moving and the resulting mobility shares.

Since the option value of moving is defined as:

Φk,hd,t = Eϵ
[
max
o,s,n

{
1

1 + ρ
V s,n
o,t′ − κks,hndo,t + ϵs,no,t

}]
,

I first derive the distribution of the maximum of random variables whose joint distribution follows the GEV

distribution in equation (31). Let U s,no,t = 1
1+ρV

s,n
o,t′ − κks,hndo,t + ϵs,no,t and U = max

o,s,n
U s,no,t . Extending Proposition

1 in Choi and Moon (1997), the cumulative distribution function is:

FU (u) ≡ P(U ≤ u)

= P(U ICT,G
1 ≤ u, . . . , Unon-ICT,R

N ≤ u)

= exp

{
−F̌

(
exp

[
1

1 + ρ
V ICT,G
1,t′ − κkICT,hG

d1,t − u

]
, . . . , exp

[
1

1 + ρ
V non-ICT,R
1,t′ − κknon-ICT,hR

dN,t − u

])}
= exp

{
− exp(−Υu)F̌

(
exp

[
1

1 + ρ
V ICT,G
1,t′ − κkICT,hG

d1,t

]
, . . . , exp

[
1

1 + ρ
V non-ICT,R
1,t′ − κknon-ICT,hR

dN,t

])}
= exp

{
− exp

(
−Υ

[
u− 1

Υ
log

[
F̌

(
exp

[
1

1 + ρ
V ICT,G
1,t′ − κkICT,hG

d1,t

]
, . . . , exp

[
1

1 + ρ
V non-ICT,R
1,t′ − κknon-ICT,hR

dN,t

])]])}
where the second last equality comes from the correlation function being homogeneous of degree logΥ.
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Thus, the distribution of the maximum is a Gumbel distribution with scale parameter Υ and location

parameter 1
Υ log

[
F̌
(
exp

[
1

1+ρV
ICT,G
1,t′ − κkICT,hG

d1,t

]
, . . . , exp

[
1

1+ρV
non-ICT,R
1,t′ − κknon-ICT,hR

dN,t

])]
. The mean of

this distribution is 1
Υ log F̌ +Υγ, where γ is Euler’s constant. Thus the option value of moving – also known

as the inclusive value of the entire choice set in the discrete choice literature – is given by:

Φk,hd,t =
1

Υ
log

[∑
o,s

(∑
n

exp

(
1

1 + ζ
V s,n
o,t′ − κks,hndo,t

)Υ
υ

)υ]
, (52)

where the term Υγ is constant over time and markets and hence can be normalized to 0. Substituting the

option value of moving into the individual worker migration problem in equation 30 yields the expected

worker value in equation 32.

Mobility shares are given by the probability of choosing a specific market (o, s, n) to move to:

µks,hndo,t =
∂Φk,hd,t

∂
(

1
1+ρV

s,n
o,t′ − κks,hndo,t

)

=
exp

(
1

1+ζV
s,n
o,t′ − κks,hndo,t

)Υ
υ

∑
n′

exp
(

1
1+ζV

s,n′

o,t′ − κks,hn
′

do,t

)Υ
υ

︸ ︷︷ ︸
switching between production and research

·

[∑
n′

exp
(

1
1+ζV

s,n′

o,t′ − κks,hn
′

do,t

)Υ
υ

]υ
∑
o′

∑
s′

[∑
n′

exp
(

1
1+ζV

s′,n′

o′,t′ − κks
′,hn′

do′,t

)Υ
υ

]υ
︸ ︷︷ ︸

migration across regions and sectors

where the first equality comes fromMcFadden (1978). Note that given the correlation function, the individual

worker mobility problem can also be recast as a nested discrete choice problem: each worker first chooses

which region-sector to move to and then whether to supply their labor for research or production in that

region-sector. In this formulation, we can interpret the second term as the probability of choosing region

o and sector s among all region-sector alternatives and the first term as the conditional probability of

choosing production or research given the region-sector choice. The conditional option value of choosing

between production and research given the choice of region o and sector s is:

Φks,hdo,t =
υ

Υ
log

[∑
n

exp

(
1

1 + ζ
V s,n
o,t′ − κks,hndo,t

)Υ
υ

]
.

The unconditional option value across all regions, sectors, and occupations – as shown in equation 52 – is

related to this conditional option value as follows:

Φk,hd,t =
1

υ
log

[∑
o,s

exp
(
Φks,hdo,t

)υ]
. (53)

Notice that when υ = 1 in the correlation function, draws of ϵ are independent across markets, and the

worker mobility shares and option value collapses to expressions of the form in Caliendo et al. (2019).
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Thus, this proof generalizes dynamic migration in general equilibrium to a setting where preference shocks

are correlated across markets, i.e. drawn from a generalized extreme value distribution with any arbitrary

correlation function F̌ that satisfies the properties listed in McFadden (1978) and µ-homogeneity in Ben-

Akiva and Francois (1983).

C.5 Lemma 5 (Market Clearing)

Proof. The market clearing condition is slightly more complex relative to standard trade models due to the

transfer of profits across regions. To account for these transfers, I follow Eaton and Kortum (2024) and

distinguish across profits earned from innovation Π, production Π∗, and sales Π in each region. Income in

each region Yd,t equals total expenditure from the region, which comes from two sources: final spending by

production workers and profits earned from innovation by firms. Thus the market clearing condition is given

by:

wk,Go,t L
k,G
o,t +Πko,t

∗
=
∑
d

πkod,tι
k

[∑
k

wk,Gd,t L
k,G
d,t +Πkd,t

]

=⇒ 1 + θ

θ
wk,Go,t L

k,G
o,t =

∑
d

πkod,tι
k

[∑
k

(
wk,Gd,t L

k,G
d,t +

∑
r

φkdr,tΠ
k
r,t

∗
)]

=⇒ 1 + θ

θ
wk,Go,t L

k,G
o,t =

∑
d

πkod,tι
k

[∑
k

(
wk,Gd,t L

k,G
d,t +

∑
r

φkdr,t
1

θ
wk,Gr,t L

k,G
r,t

)] (54)

where φkdr,t are the idea adoption shares and πkod,t are the trade shares. Note that relative to the market

clearing condition in Eaton and Kortum (2024), I eliminate the profit terms by exploiting the fact that profits

earned from production is a constant multiple of income earned by production workers in the region-sector:

wk,Go,t L
k,G
o,t +

1

1 + θ

∑
d

πkod,tX
k
d,t =

∑
d

πkod,tX
k
d,t.

This enhances the tractability and simplifies the potential quantification of the model.

C.6 Proposition 1 (Invariant Markup Distribution)

Proof. In each sector k, the probability that an idea i of quality q discovered at time t∗ in region r undercuts

the lowest cost competition in region d by a factor m at time t is:

P

[
1

qr,t∗
max
o′

{
wko′,tτ

k
o′d,t

ao′,t

}
≤ c

m

]
= P

[
c ≥ m

qr,t∗
max
o′

{
wko′,tτ

k
o′d,t

ao′,t

}]
= 1−Gkd

(
m

qr,t∗
max
o′

{
wko′,tτ

k
o′d,t

ao′,t

})
(55)

The conditional cost distribution in region d buying goods from region o is given by:

Gkod(c) = P
[
Zko ≥

wkoτ
k
od

c

]
= 1− F ko

(
wkoτ

k
od

c

)
(56)
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Let Cd(Z) = mino′ Co′d(Z). Then the unconditional cost distribution is:

Gkd(c) = P [Cd(Z) ≤ c] = 1− P [Cd(Z) ≥ c]

= 1− exp

−

 N∑
r′=1

�
t

−∞

[
N∑
o′=1

Ωr′o′,t∗(t− t∗)
(
wko′,tτ

k
o′d,t

)− θ
1−ρ

]1−ρ
λkr′,t∗dt

∗

 cθ


= 1− exp

−

 N∑
r′=1

[
N∑
o′=1

T kr′o′,t

(
wko′,tτ

k
o′d,t

)− θ
1−ρ

]1−ρ cθ


(57)

This is analogous to the unconditional cost distribution in Eaton and Kortum (2002) but with productivity

drawn from a multivariate Fréchet distribution.

Given the unconditional cost distribution, I now build on Eaton and Kortum (2001) and compute the

probability that an idea discovered in region r at time t∗ will undercut the lowest cost competitor in region

d at time t by m:

bkrd(m, t
∗, t) =

� ∞

1

�
R+

1−Gkd

(
m

qr,t∗
max
o′

{
wko′,tτ

k
o′d,t

ao′,t

})
dMr(a1, . . . , aN ; t− t∗)dH(q)

=

� ∞

1

�
RN
+

exp

−

 N∑
r′=1

[
N∑
o′=1

T kr′o′,t

(
wko′,tτ

k
o′d,t

)− θ
1−ρ

]1−ρ(m
q
max
o′

{
wko′,tτ

k
o′d,t

ao′

})θ
dMr(a1, . . . , aN ; t− t∗)dH(q)

≈
m−θ

�
RN
+

max
o′

aθo′
(
wko′,tτ

k
o′d,t

)−θ
dMr(a1, . . . , aN ; t− t∗)

∑N
r′=1

[∑N
o′=1 T

k
r′o′,t

(
wko′,tτ

k
o′d,t

)− θ
1−ρ

]1−ρ

=

m−θ
[∑N

o′=1Ωro,t∗(t− t∗)
(
wko′,tτ

k
o′d,t

)− θ
1−ρ

]1−ρ
∑N

r′=1

[∑N
o′=1 T

k
r′o′,t

(
wko′,tτ

k
o′d,t

)− θ
1−ρ

]1−ρ
=
m−θϕkrd,t∗t

λkr,t∗

(58)

where ϕrd,t∗t is defined in equation 18; the equality in the second line applies the Marking Theorem for

Poisson processes in Kingman (1992) – first used by Lind and Ramondo (2023a) to derive the multivariate

Fréchet distribution for productivity ; the approximation in the third line comes from how levels of q below

1 are handled, following equation (10) and Footnote 9 in Eaton and Kortum (2001), and; the equality in

the fourth line comes from the joint distribution of applicabilities Mr(a1, . . . , aN ; t− t∗) being independent

Fréchet across o, as described in Appendix A2 in Lind and Ramondo (2024).
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Hence the probability that an idea of quality q discovered in region r at time t∗ will undercut the lowest

cost competitor in region d at time t by m via production in region o is simply brd(m, t
∗, t) multiplied by

the probability that region o is the least cost producer of the idea:

brod(m, t
∗, t) = brd(m, t

∗, t)φrod|rd,t∗t =
m−θφrod|rd,t∗tϕrd,t∗t

λr,t∗
(59)

Consequently, the probability that an idea discovered in region r at time t∗ will lead to the respective good

being sold in market d at t is:

brd(1, t
∗, t) =

ϕrd,t∗t
λr,t∗

. (60)

Intuitively, ϕrd,t∗t is the share of goods produced in region t using ideas discovered in region r at time t∗,

while λr,t∗ is the arrival rate of ideas at time t∗. Thus, its ratio provides the probability that any given idea

discovered in region r at time t∗ will enter market d at t. Likewise, the probability that an idea discovered

in region r at time t∗ will enter market d at t via production in region o is:

brod(1, t
∗, t) =

φrod|rd,t∗tϕrd,t∗t

λr,t∗
. (61)

Thus, the markup distribution in region d at time t for a cohort of ideas from region r, conditional on

selling in region d, either conditional or unconditional on the production location o, is time- and

region-invariant and given by:

P (M ≤ m|M ≥ 1) =
brd(1, t

∗, t)− brd(m, t
∗, t)

brd(1, t∗, t)
=
brod(1, t

∗, t)− brod(m, t
∗, t)

brod(1, t∗, t)
= 1−m−θ = H(m). (62)

C.7 Proposition 2 (Spatial and Sectoral Direction of Innovation)

The ratio of inventor real wages across regions in the same sector follows directly from the text. Additionally,

the sectoral direction of innovation is governed by:

ωk,Rr,t∗

ωk
′,R
r,t∗

=
Akt∗

Ak
′
t∗︸︷︷︸

differences in
fundamental

research
productivity
across sectors

·

�∞
t∗ e−ζ(t−t

∗)
∑N

d=1

ϕk
rd,t∗t
λk
r,t∗

Xk
d,t

1+θ
1
Pr,t

dt

�∞
t∗ e−ζ(t−t∗)

∑N
d=1

ϕk
′

rd,t∗t

λk
′

r,t∗

Xk′
d,t

1+θ
1
Pr,t

dt︸ ︷︷ ︸
expected market potential of an idea

. (63)

The first term captures the compositional shift of innovation towards ICT at a national level, and the second

term captures differences in the expected market potential of ideas across sectors.
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C.8 Proposition 3 (Balanced Growth Path)

Proof. Part (i): On the balanced growth path, technology levels in all regions and sectors grow at the same

rate g = Ṫk
r (t)
Tk
r

∀r, k, the exogenous bilateral diffusion lags δro are constant over time and the innovation rate

is given by:

λkr (t) = γkrT
k
r (t) =⇒ λ̇kr (t) = γkr Ṫ

k
r (t). (64)

From equation 15 we know that the technology level at each time t is given by:

T ko,t =

N∑
r=1

T kro,t =

N∑
r=1

� t

−∞
Ωro(t− t∗)1−ρ · λkr (t∗)dt∗.

Taking the derivative w.r.t. t yields:

Ṫ ko,t =
N∑
r=1

� t

−∞

dΩro(t− t∗)1−ρ

dt
· λkr (t∗)dt∗ +Ωro(0)

1−ρλkr (t).

Now using integration by parts with u = λkr (t
∗) and dv = dΩro(t−t∗)1−ρ

dt yields:

Ṫ ko,t =
N∑
r=1

[
−λkr (t∗)Ωro(t− t∗)1−ρ

]t∗=t
t∗=−∞

+

� t

−∞
Ωro(t− t∗)1−ρλ̇kr (t

∗)dt∗ +Ωro(0)
1−ρλl(t)

=
N∑
r=1

lim
t∗→−∞

λkr (t
∗)Ωro(t− t∗)1−ρ +

� t

−∞
Ωro(t− t∗)1−ργkr Ṫr(t

∗)dt∗

=
N∑
r=1

γkr

� t

−∞
Ωro(t− t∗)1−ρṪ kr (t

∗)dt∗.

Thus we have that:

Ṫ ko,t =

N∑
r=1

γkr

� t

−∞
Ωro(t− t∗)1−ρ

Ṫ kr (t
∗)

T kl (t
∗)
T kr (t

∗)dt∗

= g
N∑
r=1

γkr

� t

−∞
Ωro(t− t∗)1−ρT kr (t)e

−g(t−t∗)dt∗

=
∑
r

γkrT
k
r,t

� t

−∞
ge−g(t−t

∗)
[
1− e−δro(t−t

∗)
]1−ρ

dt∗

=
∑
r

γkrT
k
r,t

� ∞

0
ge−ga

[
1− e−δro(a)

]1−ρ
da

(65)

where e−δrr(t−t
∗) ≡ 0 and the last equality follows from a change of variable a = t − t∗. Note that�∞

0 ge−ga
[
1− e−δro(a)

]1−ρ
da is a constant.

Now building on Eaton and Kortum (2024), in matrix form we have:

gTk = ∆k(g)Tk (66)
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where Tk is anN×1 vector with representative element T kr and∆k(g) is anN×N matrix with representative

element:

∆k
ro(g) = γkr

� ∞

0
ge−ga

[
1− e−δro(a)

]1−ρ
da.

The aggregate growth rate is the Perron-Frobenius root of equation 66 with relative technology levels T

corresponding to the Perron-Frobenius eigenvector that is defined up to a scalar multiple. Thus, any set

of exogenous diffusion speeds δro and endogenous innovation rates γkr delivers a balanced growth path with

parallel growth at rate g with level differences in technology T across regions.

Part (ii): I now solve for the remaining variables in the economy on the BGP in the general formulation

with exponential diffusion and idea applicabilities. Suppose that the distribution of workers across regions,

sectors, and occupations are constant on the BGP. Since the relative technology levels are also constant on

the balanced growth path, the trade shares given by equation 18 and the market condition given by equation

35 imply that relative wages across regions and sectors in production is constant. In particular, trade shares

on the BGP are given by:

πkod =
N∑
r=1

� ∞

0

Ωro(a)
(
wkoτ

k
od

)− θ
1−ρ

N∑
o′=1

Ωro′(a)
(
wko′τ

k
o′d

)− θ
1−ρ

·
γkrT

k
r e

−gk·a
[
N∑
o′=1

Ωro′(a)
(
wko′τ

k
o′d

)− θ
1−ρ

]1−ρ
N∑
r′=1

γkr′T
k
r′

�
∞

0

[
N∑
o′=1

Ωr′o′(a′)
(
wko′τ

k
o′d

)− θ
1−ρ

]1−ρ
e−gk·a′da′

da.

(67)

where T kr are the relative technology levels determined by equation 66.

On the BGP, the price index in each region and sector is given by:

P kd,t
BGP

= Γ

 N∑
r′=1

γkr′T
k
r′,t

� ∞

0

e−ga

[
N∑
o′=1

Ωr′o′(a)
(
wko′τ

k
o′d

)− θ
1−ρ

]1−ρ
da

− 1
θ

(68)

Differentiating this expression w.r.t time, the growth rate of the sectoral price index is:

gPk =

˙P kd,t
BGP

P kd,t
BGP

= −1

θ

∑
r′

π̌r′d

˙T kr′,t

T kr′,t
= −g

k

θ
(69)

Since preferences are Cobb-Douglas across local sectoral final goods for each region, the aggregate price

index is:

Pd,t = Γ̌
∏
k

(
P kd,t

)ιk
(70)

where Γ̌ is a constant. The growth rate of the aggregate price index on the BGP is:

gp = −1

θ

∑
k

ιkgk (71)
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On the BGP, the expected value of an idea is:

V̌ k
r,t∗ =

Pr,t∗

1 + θ

�
e−ζ(t−t

∗)
∑
d

ϕrd,t∗t

γkrT
k
r,t∗

Xd,t

Pr,t
dt

=

∑
d ϕrdXd

1 + θ

1

γkrT
k
r,t∗

�
e−ζ(t−t

∗)e−gP (t−t∗)dt

=

∑
d ϕrdXd

1 + θ

1

γkrT
k
r,t∗

1

ζ − gP /θ
.

(72)

Thus V̌ k
r,t∗ is falling at rate gk on the BGP while inventor wages are constant and given by:

wk,Rr =

∑
d π̌rdXd

1 + θ

1

Lk,Rr

1

ζ − gP /θ
. (73)

I now solve for the growth rate of worker expected value. Let exp
(
V k,h
d,t

)
= exp

(
Ṽ k,h
d,t

)
egV t and Pd,t =

P̃d,te
gP t, where Ṽ k,h

d,t and P̃d,t are the detrended value and price respectively. Thus given production worker

wages, inventor wages and local aggregate prices, worker expected value is given by:

V k,h
d,t = Ṽ k,h

d,t + gV t

= log

(
wk,hd,t

P̃d,t

)
− gP t+

1

Υ
log

[∑
o

∑
s

(∑
n

exp

(
1

1 + ζ

[
Ṽ s,n
o,t′ + gV t

′
]
− κks,hndo

)Υ
υ

)υ]

= log

(
wk,hd,t

P̃d,t

)
− gP t+

1

1 + ζ
gV t

′ +
1

Υ
log

[∑
o

∑
s

(∑
n

exp

(
1

1 + ζ
Ṽ s,n
o,t′ − κks,hndo

)Υ
υ

)υ] (74)

On the BGP, the growth rate must be the same on both sides of the equation. Thus, the growth rate of

expected value is given by:

gv = −gp +
1

1 + ζ
gv

=⇒ gv = −1 + ζ

ζ
gp =

1 + ζ

ζ

1

θ

∑
k

ιkgk
(75)

where the first equality comes from 1
1+ζ gvt

′ = 1
1+ζ gvt +

1
1+ζ gv in equation 74 since Et(t′ − t) = 1, because

the Poisson arrival rate of move possibilities is 1. The detrended expected value of workers is given by:

Ṽ k,h
d,t = log

(
wk,hd,t

P̃d,t

)
+

1

1 + ζ
gv +

1

Υ
log

[∑
o

∑
s

(∑
n

exp

(
1

1 + ζ
Ṽ s,n
o,t′ − κks,hndo

)Υ
υ

)υ]
. (76)
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Substituting the decomposition of expected worker value in equation 74 into equation 33 in the main text,

worker mobility shares are alternately given by:

µks,hndo,t =
exp

(
1

1+ζ Ṽ
s,n
o,t′ − κks,hndo,t

)Υ
υ

∑
n′

exp
(

1
1+ζ Ṽ

s,n′

o,t′ − κks,hn
′

do,t

)Υ
υ

·

[∑
n′

exp
(

1
1+ζ Ṽ

s,n′

o,t′ − κks,hn
′

do,t

)Υ
υ

]υ
∑
o′

∑
s′

[∑
n′

exp
(

1
1+ζ Ṽ

s′,n′

o′,t′ − κks
′,hn′

do′,t

)Υ
υ

]υ (77)

and are constant on the BGP. Hence, from equation 34, the distribution of workers across regions, sectors,

and occupations are constant on the BGP.

Thus the balanced growth path of the economy is obtained, where workers, wages, migration shares, trade

shares and innovation rates are constant, technology in each sector k and region is growing at rate gk

determined from equation 66, prices in each region is growing at rate gp = −1
θ

∑
k ι
kgk and expected worker

value is growing at rate gv =
1+ζ
ζ

1
θ

∑
k ι
kgk.

Special Cases:

(i) When θ = σ (such that ρ = 0), we have the case of exponential diffusion where idea applicabilities do

not matter (case NA for no applicabilities). Equation (65) collapses to:

Ṫ ko,t =
∑
r

γkrT
k
r,t

� ∞

0
ge−ga

[
1− e−δro(a)

]
da

=
∑
r

gγkrT
k
r,t

(
1

g
+

1

g + δro

)
=
∑
r

(
δro

g + δro

)
γkrT

k
r,t

yielding equation (49) in Eaton and Kortum (2024). The trade shares and price index collapse to the

canonical Eaton and Kortum (2002) expressions:

πNAod,t =
To,t (wo,tτod,t)

−θ

N∑
o′=1

To′,t
(
wo′,tτo′d,t

)−θ , PNAd,t = Γ

[
N∑
o′=1

To′,t
(
wo′,tτo′d,t

)−θ]− 1
θ

(78)

and idea diffusion shares are given by:

φNAro,t =
N∑
d=1

Tro,t (wo,tτod,t)
−θ

N∑
o′=1

T ko′,t
(
wo′,tτo′d,t

)−θ . (79)

All the other variables and growth rates remain the same as the full model.
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(ii) When Ωro,t∗(t − t∗) = δro,t for r ̸= o and t ≥ t∗, we have the case of instantaneous diffusion with idea

applicabilities (case ID) as in Xiang (2023), equation (65) collapses to:

Ṫ ko,t =
∑
r

γkrT
k
r,t

� ∞

0
ge−gaδ1−ρro da

=
∑
r

δ1−ρro γkrT
k
r,t.

The trade shares and price index collapse to the expressions in Ramondo and Rodŕıguez-Clare (2013):

πIDod,t =

N∑
r=1

(Tro,t)
1

1−ρ (wo,tτod,t)
− θ

1−ρ

N∑
o′=1

(
Tro′,t

) 1
1−ρ
(
wo′,tτo′d,t

)− θ
1−ρ

·

[
N∑
o′=1

(
Tro′,t

) 1
1−ρ
(
wo′,tτo′d,t

)− θ
1−ρ

]1−ρ
N∑
r′=1

[
N∑
o′=1

(
Tro′,t

) 1
1−ρ
(
wo′,tτo′d,t

)− θ
1−ρ

]1−ρ (80)

P IDd,t = Γ

 N∑
r′=1

[
N∑
o′=1

(
Tr′o′,t

) 1
1−ρ
(
wo′,tτo′d,t

)− θ
1−ρ

]1−ρ− 1
θ

(81)

and the idea diffusion shares are:

φIDod,t =
(Tro,t)

1
1−ρ (wo,tτod,t)

− θ
1−ρ

N∑
o′=1

(
Tro′,t

) 1
1−ρ
(
wo′,tτo′d,t

)− θ
1−ρ

·

[
N∑
o′=1

(
Tro′,t

) 1
1−ρ
(
wo′,tτo′d,t

)− θ
1−ρ

]1−ρ
N∑
l′=1

[
N∑
o′=1

(
Tro′,t

) 1
1−ρ
(
wo′,tτo′d,t

)− θ
1−ρ

]1−ρ (82)

All the other variables and growth rates remain the same as the full model.

C.9 Proposition 4 (Transition Path)

Proof. The transition path towards balanced growth is characterized by a trajectory of detrended expected

values given by equation 76, worker mobility shares given by equation 77 and evolution of worker population

given by equation 34:

Ṽ k,h
d,t = log

(
wk,hd,t

P̃d,t

)
+

1

1 + ζ
gv +

1

Υ
log
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Ṽ s,n
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)Υ
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)υ]
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(
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)Υ
υ

∑
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1
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·

[∑
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)Υ
υ

]υ
∑
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∑
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[∑
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(

1
1+ζ Ṽ

s′,n′

o′,t′ − κks
′,hn′

do′,t

)Υ
υ

]υ
Ls,no,t′ =

∑
h

∑
k

∑
d

µks,hndo,t Lk,hd,t ,
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where at each time t the innovation and technology levels are given by equations 9 and 15 respectively:

λkr,t = Akt∗Ar,t∗
(
LRr,t∗

)α
Lk,Rr,t∗T

k
r,t∗

T ko,t =
N∑
r=1

� t

−∞
Ωro,t∗(t− t∗)1−ρ · λkr,t∗dt∗,

the trade shares, idea adoption shares, price index, and market clearing condition are given by equations 18,

23, 22, and 35 respectively:

πkod,t =
N∑
r=1

�
t

−∞

Ωro,t∗(t− t∗)
(
wk,Go,t τ

k
od,t

)− θ
1−ρ

∑
o′

Ωro′,t∗(t− t∗)
(
wk,Go′,t τ

k
o′d,t
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[∑
o′

Ωro′,t∗(t− t∗)
(
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k
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�
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(
wk,Go′,t τ

k
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)− θ
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]1−ρ
λk
r′,ť
dť

dt∗

φkro,t =

N∑
d=1

�
t

−∞

Ωro,t∗(t− t∗)
(
wk,Go,t τ

k
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)− θ
1−ρ

∑
o′
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(
wk,Go′,t τ

k
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[∑
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(
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k
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∑
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�
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[∑
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Ωr′o′,ť(t− ť)
(
wk,Go′,t τ

k
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)− θ
1−ρ

]1−ρ
λk
r′,ť
dť

dt∗

P kd,t = Γ

 N∑
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�
t

−∞

[
N∑
o′=1

Ωr′o′,t∗(t− t∗)
(
wk,Go′,t τ

k
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)− θ
1−ρ
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− 1

θ

1 + θ

θ
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(
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k,G
r,t

)]
,

the wages of inventors are given by equation 27, the returns to innovation by equation 26 and total expen-

ditures by 48 and idea market shares by 49:

wk,Rr,t = AktAr,t

(
Lk,Rr,t

)α
T kr,tV̌

k
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V̌ k
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(
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k
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)− θ
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∑
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�
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(
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k
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.
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The detrended equations for the migration part of the model (i.e. equations 76 and 77) can be further

expressed using dynamic hat algebra (Caliendo et al., 2019). Let x̂t′ =
x̃t′
x̃t

for any variable x and u = exp(V ).

Then we have:

log
(
ûk,hd,t

)
= log

(
ŵk,hd,t

P̂d,t

)
+

1

Υ
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[∑
n
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∑
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(
ûs,no,t′

) Υ
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(
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)Υ
υ

]υ]
(83)

µks,hnod,t′ =
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) Υ
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υ

∑
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·
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) Υ
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(
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)Υ
υ

]υ
∑
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[∑
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∑
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′,hn′
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(
ûs

′,n′

d′,t′

) Υ
(1+ζ)υ

(
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od′,t

)Υ
υ

]υ (84)

Lk,hd,t′ =
∑
n

∑
s

∑
o

µks,hnod,t Ls,no,t . (85)

Data on trade shares and innovation levels are at an annual frequency. To provide a direct mapping between

my model and the data, I make additional assumptions that govern the timing of innovation and production.

While inventors receive ideas from a Poisson process described in the main text, a separate Poisson arrival

process with rate 1 governs when each inventor can produce those ideas. Another independent Poisson

arrival process with rate 1 governs when each firm in each region can produce goods.

Given these assumptions, technology levels can be expressed as:

T ko,t =

N∑
r=1

∑
t∗∈Tt

Ωro,t∗(t− t∗)1−ρ · λkr,t∗ + T ko,0 (86)

where Tt are the set of innovation times t∗ from time 0 to time t. Though these innovation times are

stochastic, the expected interval between any two innovation times is 1. Note that the diffusion term

Ωro,t∗(t − t∗) remains unchanged. The innovation levels remain unchanged from equation 9. The trade

shares, idea diffusion shares, and price index can be expressed as:

πkod,t =
N∑
r=1

∑
t∗∈T

Ωro,t∗(t− t∗)
(
wko,tτ

k
od,t

)− θ
1−ρ

∑
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(
wko′,tτ

k
o′d,t
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1−ρ

[∑
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(
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k
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∑
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∑
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Ωr′o′,ť(t− ť)
(
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k
o′d,t

)− θ
1−ρ

]1−ρ
λk
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(87)

φkro,t =

N∑
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∑
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Ωro,t∗(t− t∗)
(
wko,tτ

k
od,t

)− θ
1−ρ

∑
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(
wko′,tτ

k
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k
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∑
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(
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k
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)− θ
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(88)

P kd,t = Γ

 N∑
r′=1

∑
t∗∈T

[
N∑
o′=1

Ωr′o′,t∗(t− t∗)
(
wko′,tτ

k
o′d,t

)− θ
1−ρ

]1−ρ
λkr′,t∗

− 1
θ

, (89)

while the market clearing condition remains unchanged from equation 35. Inventor wages are given by
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equation 27, total expenditures by equation 48, while the value of an idea and the idea market shares are

now given by:

V̌ k
r,t =

∑
t′∈T∞

t

(
1

1 + ζ

)t′−t N∑
d=1

Xk
d,t′

1 + θ
· Pr,t
Pr,t′

·
ϕkrd,tt′

λkr,t
(90)

ϕkrd,tt′ =

[∑
o′

Ωro′,t(t
′ − t)

(
wkr′,t′τ

k
ro′,t′

)− θ
1−ρ

]1−ρ
λkr,t

∑
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∑
ť∈Tt′
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[∑
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Ωr′o′,ť(t
′ − ť)

(
wko′,t′τ

k
o′d,t′

)− θ
1−ρ

]1−ρ
λk
r′,ť

. (91)

Special Cases:

When idea applicabilities are not relevant (case NA), only changes in trade costs – as opposed to levels –

along with the other fundamentals are required to simulate the transition path. This is because the trade

shares, idea diffusion shares, and price index depend only on the contemporaneous technology stock rather

than the trajectory of innovation in all past periods, and are given by equations 78 and 79:

πk,NAod,t =
T ko,t

(
wko,tτ

k
od,t

)−θ
N∑
o′=1

T ko′,t

(
wko′,tτ

k
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N∑
d=1

T kro,t

(
wko,tτ

k
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)−θ
N∑
o′=1

T ko′,t

(
wko′,tτ

k
o′d,t

)−θ , P k,NAd,t = Γ

[
N∑
o′=1

T ko′,t

(
wko′,tτ

k
o′d,t

)−θ]− 1
θ

.

Thus, the production side of the economy can also be expressed using dynamic hat algebra. Changes in

trade shares, idea diffusion shares and the price index are given by:

π̂k,NAod,t =
T̂ ko,t

(
ŵko,tτ̂

k
od,t

)−θ
N∑
o′=1

T̂ ko′,t

(
ŵko′,tτ̂

k
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)−θ (92)

φ̂k,NAro,t =
N∑
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(
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k
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k
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P̂ k,NAd,t =

[
N∑
o′=1

T̂ ko′,t

(
ŵko′,tτ̂

k
o′d,t

)−θ]− 1
θ

(94)

and the market clearing condition remains unchanged from equation 35. Innovation levels remain unchanged

from equation 9 and changes in technology levels are given by:

T ko,t′ − T ko,t =
∑
r

δro,t

(
Λkl,t − T klo,t

)
=⇒ T̂ ko,t′ = 1− δro,t +

∑
l

δlo,tΛ
k
l,t

T ko,t

(95)
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where Λkr,t =
∑
t∗∈T

λkr,t∗ is the stock of innovations produced in region r at time t. This recursive formulation of

exponential idea diffusion comes from Eaton and Kortum (2024). Since changes in technology are a function

of the previous technology level, data on initial technology levels are still required to solve the transition

path quantitatively.

Similarly, when there is instantaneous diffusion (case ID), only changes in trade costs – as opposed to

levels – along with the other fundamentals are required to simulate the transition path. Trade shares, idea

diffusion shares, and price index are given by equations 80 -82:
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Thus changes in trade shares, idea diffusion shares and the price index are given by:
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ŵko,tτ̂

k
od,t

)− θ
1−ρ

N∑
o′=1

(
T̂ kro′,t

) 1
1−ρ
(
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and the market clearing condition remains unchanged from equation 35. Changes in technology levels are

given by:

T ko,t′ − T ko,t =
∑
r

δ1−ρro,t γ
k
r,tT

k
r,t

=⇒ T̂ ko,t′ = 1 +
∑
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T kr,t

T ko,t

(99)
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and innovation levels remain unchanged from equation 9.

C.10 Corollary 3 (Regional and Aggregate Welfare)

Proof. I extend the welfare derivation and expression in Caliendo et al. (2019) to my setting, where: (i)

preference shocks are correlated across markets; (ii) there is endogenous and microfounded innovation and

technology diffusion, and (iii) the endogenous distribution of innovation and technology diffusion across

markets drives parallel growth in all regions in the long run.

The expected worker value in equation (32) is given by:
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I now express the option value Φk,hd,t in terms of own-migration shares:
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Hence, expected worker value can be alternately expressed as:
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Iterating this equation forward, we have:
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.

Denote x́ as the counterfactual of any variable x. My measure of the welfare impact in market (d, k, h)

of an anticipated sequence of counterfactual changes in fundamentals from time t = 0 is the compensating
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variation in consumption for market (d, k, h) at t = 0, log δk,hd given by:
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Rearranging this equation and substituting the expressions for expected worker value, we have:
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real wages

1(
¨µkkdd,t

)1/Υ ( ¨
µkk,hhdd,t |µkkdd,t

)υ/Υ
︸ ︷︷ ︸
change in option value of migration

)
+

1

θ

∑
k

ιk
(
ǵk − gk

)
︸ ︷︷ ︸

growth effects

,

where ẍt′ =
̂́xt′
x̂t

denotes the counterfactual change in any detrended variable x. Recall that x̂t′ =
x̃t′
x̃t

denotes

the time changes in any detrended variable x.

Using this measure, I define local and aggregate welfare as population-weighted averages of welfare in

the relevant markets:

log (δd) =
∑
k,h

Lk,hd∑
k,h L

k,h
d

log
(
δk,hd

)
log (δ) =

∑
d,k,h

Lk,hd∑
d,k,h L

k,h
d

log
(
δk,hd

)
.

D Model Extensions

My quantitative spatial growth model in the main text is deliberately parsimonious to capture the main

drivers of the rising spatial concentration of innovation from the data. Nonetheless, the central feature of

my spatial model is that I introduce endogenous innovation and integrate it with technology diffusion at the

idea level, the fundamental unit of the Eaton-Kortum world. Thus, my model requires minimal assumptions

and can flexibly incorporate other components in quantitative dynamic spatial models.

D.1 Dynamic Worker Sorting by Skill

To incorporate college-educated H and non-college educated S workers, equations 29-34 can be duplicated

for each worker type. Equilibrium migration shares would now capture worker sorting patterns in the data

as opposed to aggregate bilateral migration flows across both worker types. In the production of goods,
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labor is now a composite of college-educated and non-college educated workers. For instance, one could

assume a CES agggregate between both types of labor:

Lko,t =

[(
LH,ko,t

)φ−1
φ

+
(
LS,ko,t

)φ−1
φ

] φ
φ−1

(100)

such that wages wko,t in the market clearing condition is now an aggregate of wages of each worker type, with

no other required changes. Note that I drop the superscript G for production workers in this section of the

appendix for notational clarity, since there is no discussion on innovation workers.

D.2 Multiple Factors of Production and Input-Output Loops

Input-output loops can be easily incorporated into the trade equilibrium at each t following Alvarez and

Lucas (2007); Caliendo and Parro (2015). Instead of just using labor, production of each variety ν in each

region is now given by a two-tier Cobb-Douglas constant returns to scale technology:

Y k
o,t(ν) = zko,t(ν)

[
(Kk

o,t)
ψ(Lko,t)

1−ψ
]χ
M1−χ
o,t (101)

where zo,t(ν) is the productivity drawn from the multivariate Fréchet distribution given by equation 13, Ko,t

is capital used in production, referring to commercial structures such as local buildings, Lo,t is labor, and

Mo,t is intermediate inputs purchased from the final goods producer in the same region, ψ is the share of

local structures in value added, and χ is the share of value added. The unit cost of an input bundle is given

by:

xko,t = Γ̌

[
(řo,t)

ψ
(
wko,t

)1−ψ]χ
P ko,t

1−χ
(102)

where Γ̌o is a constant, řo,t is the rental rate of capital from local capitalists, and Po,t is also the price of

the local industry aggregate of varieties. Replacing wo,t with xo,t in equation 18 yields the equilibrium trade

shares.

Capital market clearing is given by:

řo,tK
k
o,t =

1− ψ

ψ
wko,tL

k
o,t (103)

Since capital income is a constant multiple of production worker income, the combined capital and labor

market clearing condition is still given by equation 35 in the main paper. With input-output loops of the

form in equation 102 – where goods producers purchase the final good only in that sector34 – intermediate

good spending is a constant multiple of production worker and capital income:

XI
o,t =

1− χ

χ

(
wko,tL

k
o,t + ro,tK

k
o,t

)
=

1− χ

χ

1

ψ
wko,tL

k
o,t. (104)

Thus, the combined capital and labor market clearing condition is still given by equation 35 in the main

34If goods producers purchase the final goods from all sectors, the market clearing condition will be slightly modified, as
shown in Caliendo and Parro (2015), but remains highly tractable.
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paper. All the other equations in the model also remain the same.

D.3 Capital Accumulation

Capital accumulation can be added following Kleinman et al. (2023). Apart from workers and local immobile

firms, we can introduce local immobile capitalists. In each region, local immobile capitalists build durable

local structures Ko,t and rent to firms in different sectors at a nominal rate řo,t. With their rental income,

capitalists choose their consumption and investment to maximize intertemporal utility:

V̆ K
o,t = Et

∞∑
s=0

βt+s
(
CKo,t+s

)1−1/η

1− 1/η
(105)

subject to their budget constraint:

ro,tKo,t = Po,t
(
CKo,t +Ko,t+1 − (1− δo,t)Ko,t

)
(106)

where rental income can be used for consumption (first term), or saving to increase future capital (last

two terms). Per period consumption expenditures Po,tC
K
o,t are allocated via the same utility function as

households, given by equation (29).

The optimal consumption and saving decisions are given by:

CKo,t = ςo,tRo,tKo,t (107)

Ko,t+1 = (1− ςo,t)Ro,tKo,t (108)

ς−1
o,t = 1 + βη

(
Et
[
R

η−1
η

o,t+1ς
− 1

η

o,t+1

])η
(109)

where the consumption rate ςo,t is defined recursively and the gross return on capital is Ro,t ≡ 1−δ+ro,t/Po,t.
The other equations in the model remain the same.

D.4 Amenities with Congestion and Agglomeration in Production

Amenities, explicit congestion forces, and agglomeration in production can be introduced following Allen

and Arkolakis (2014). The instantaneous utility function is now given by:

U (Co,t, Bo,t) = log (Bo,tCo,t) (110)

with Bo,t = B̌o,tL
−ξ
o,t where B̌o,t are fundamental amenities in region o at time t and ξ captures congestion

forces. The goods production function in equation 101 now becomes:

Y k
o,t(ν) = zko,t(ν)(L

k
o,t)

α̌
[
(Kk

o,t)
ψ(Lk,Go,t )

1−ψ
]χ
M1−χ
o,t (111)

where α̌ captures agglomeration in production. All the other equations in the model remain the same.
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